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The work in this thesis is divided into two aims. The first aim is to provide a 

detailed analysis of water molecules at protein-protein interfaces as well as quantifying 

their contributions with respect to different residue types. To achieve this aim a data set 

of 4741 water molecules abstracted from 179 high-resolution (≤ 2.30 Å) X-ray crystal 

structures of protein-protein complexes was analyzed with a suite of modeling tools 
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based on HINT. The second aim is to observe the effect of adding interfacial water 

molecules in developing a model for the protein-protein interaction between pyridoxal 

kinase and serine hydroxymethyltransferase. This model was created to explore the 

possibility of the formation of a channel between the two proteins upon interaction 

providing a safe way to transport the substrate pyridoxal 5‟-phosphate (active form of 

vitamin B6). This work demonstrates a substantial progress in the understanding of the 

role of water molecules in protein-protein binding. 
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CHAPTER 1 

GENERAL INTRODUCTION 

 

 

 

1.1 Role of water in protein-protein complex interface: 

1.1.1 Water the vivacious molecule:  

Water is a vital component in all living organisms. It plays various roles in different 

biochemical processes. For macromolecules, water is crucial for maintaining structure and 

mediating molecular recognition, it provides a way of communication across membranes and 

between the inside and outside of proteins [1]. Although it may seem that water‟s chemical and 

physical properties are similar to those of other polar solvents, it is very hard to imagine any 

other solvent that could fulfill all of its roles, especially in biology. Water molecules are unique 

in their ability to engage in four directional hydrogen bonds in a way that allows for easy and 

rapid reorientation and reconfiguration into different three-dimensional structures. 

1.1.2 Different roles of water in biological processes:  

When it comes to biological models, water is often described as an inactive constituent. 

However, water plays a central role in many life processes. Water molecules are known to 

mediate protein folding [2,3].
 
 In addition, the presence of water molecules was found to enhance 

and tune functions of proteins. Ohno et al. found by using quantum-chemical methods that water 

molecules helped to enhance the catalytic activity of ribonuclease T1 in addition to maintaining 
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its structure [4].
 
Okada et al. also showed that two water molecules play a central role in tuning 

the central chromophore of rhodopsin, retinal, to different wavelengths in the red, green, and 

blue cone cells of the retina [5]. Moreover, water molecules were found to be directly involved in 

the catalytic action of some enzymes. For example, a water molecule in the bacterial enzyme 

zinc lactamase, acts as a nucleophile to initiate splitting of the lactam ring, a mechanism whereby 

bacteria resists lactam antibiotics [6]. In addition, water molecules are involved in electron 

transfer between proteins and other macromolecules as evident by two ordered water molecules 

bound at the interface between the redox centers of cross-linked azurin proteins, which appeared 

to assist significantly in electron transfer [7].
 

1.1.2.1 Role of water molecules in protein-ligand binding:  

Generally, small molecule modulators are designed to replace water molecules in the 

protein active site. However, these waters might also have other roles. Retained water molecules 

in the active site can make the binding surface highly adaptable and can act as extensions to 

residues for assisting in the specificity of substrate binding. To prove the importance of including 

water molecules in ligand binding calculations, Kellogg and co-workers analyzed the interactions 

between 23 ligands and HIV-1 protease. They found that the inclusion of bridging water 

molecules results a significant improvement of the correlation between HINT scores (vide infra) 

and the experimentally determined binding constants (r
2
 improved from 0.30 to 0.61) [8-14]. 

In a subsequent study, Kellogg and co-workers used HINT score and Rank to predict the 

role of water molecules in protein active sites. They were particularly interested in three 

categories of water molecules: waters with high Rank and HINT scores, waters with moderate 

Rank and high HINT scores and waters with low Rank and HINT scores. Water molecules from 
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the first category are unlikely to make additional interactions with the ligand and are mostly 

irrelevant to the binding process, while water molecules in the second category are available to 

interact with ligands. Water molecules in the third category were found to be easily displaced 

from the protein‟s active site due to steric reasons [12]. These results emphasized the importance 

of mapping water contribution to the energetics of ligand-protein binding. The same principles 

could also apply to bio-macromolecular associations as in protein–protein and protein–DNA 

recognition. 

1.1.2.2 Role of water molecules in protein-DNA binding:  

In another analysis by Kellogg and co-workers done on a dataset of 100 high-resolution 

protein-DNA structures using HINT, it was found that about 22% of water molecules mediating 

the protein-DNA recognition (located within 4.0 Å of both protein and DNA at the complex 

interface) act as protein-DNA linkers. In addition, it was found that water-mediated interaction 

between Adenine and positively charged or H-bond donor residues like Arg, Lys, Asn, Tyr, His, 

and Ser likely relieve electrostatic repulsion between H-bond donor groups. Cytosine was 

typically involved in water-mediated interactions with Asp and Glu, in which water act as an 

extension arm for the short amino acid side. The probability of an interaction between Thr-A and 

Lys-A were observed to exhibit about tenfold and fivefold increases, respectively, when there is 

a water molecule involved in the interaction [10].
 

The above observations were in agreement with others observed in earlier studies. 

Luscombe et al. analyzed 129 protein-DNA complexes and found that water molecules mediate 

approximately 16% of the protein-DNA interactions. In addition, the authors indicated that the 

distribution of water-mediated hydrogen bonds and direct hydrogen bonds are comparable. They 
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also observed the extensive use of aspartate and glutamate, for which the unfavorable 

electrostatic charge is minimized by water interaction [15].  Reddy and co-workers analyzed 109 

unique protein-DNA complexes. Their analysis was based on the chemical identity of 

macromolecular atoms proximal to the interfacial water molecules. They inferred that most of 

water molecules serve to buffer electrostatic repulsions between electronegative atoms of the 

DNA and the protein and that only 2 % of the observed water molecules act as linkers to form 

hydrogen bonds that compensate for the lack of a direct hydrogen bond. They also indicated that 

water molecules at the interface of protein-DNA complexes can play additional roles such as: 

mediating interaction and specific recognition by contacting both protein and DNA, acting as 

solvating agents or buffering electrostatic repulsions between protein polar residues and DNA 

phosphate groups, and waters contact only with other water molecules, thus forming a hydrogen-

bond network [16].
 

1.1.2.3 Role of water molecules in protein-protein binding:  

Similarly, water proved to have a central role in protein-protein complex formation. The 

stability of protein-protein complexes depends on a complicated network of non-covalent bonds 

such as ionic interactions, hydrophobic interactions and hydrogen bonds. The energies of these 

types of bonds are in the range of 2–6 kcal/mol, which is considered weak [17]. Therefore, a 

large number of non-covalent interactions are essential for the formation of stable protein-protein 

complexes. Water molecules within cavities formed between two bounded proteins play a 

fundamental role for the formation and stabilization of the protein-protein complexes [18]. 10%–

20% of the interface areas of protein complexes are made up of cavities in which at least one 

water molecule was observed [19,20].
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In a review by Lazaridis et al., the authors concluded that water molecules greatly 

influence the thermodynamic properties of binding of biomolecules. Interfacial waters involved 

in hydrogen bonds make a negative contribution to the entropy, enthalpy, and heat capacity of 

binding, while, waters that do not form hydrogen bonds can have higher entropy than in the bulk. 

In addition, they noted that water-mediated interactions can be as strong as direct interactions 

[18]. Papoian, Ulander and Wolynes applied energy landscape theory to evaluate water-mediated 

recognition [21]. Keskin and Nussinov have described water inclusion as an alternative strategy 

for proteins to achieve optimum association [22,23]. 

A small number of research groups have worked on understanding the importance of 

interfacial waters to protein-protein complexes over the last several years.  Notably, Baker and 

co-workers described a simple model for the energetics of water-mediated hydrogen bonds, 

which improved the prediction of free-energy changes upon mutation at protein–protein 

interfaces. They also described a “solvated rotamer” approach for the prediction of water 

molecules positions, at protein–protein interfaces and in monomeric proteins [24]. In another 

study, Backer and colleagues reengineered the protein-protein interface of colicin E7 and 

DNase−Im7, which improved their specificity by 30-fold. However, when they designed a de 

novo hydrogen bond network by mutating some of the residues at the interface to displace highly 

conserved water, it resulted in a 300-fold increase in specificity. These results were further 

confirmed by solving the crystallographic structure for this reengineered complex [25].
 

Janin and co-workers pointed out that bridging protein–water–protein H-bonds are nearly 

as abundant as direct protein–protein H-bonds [26]. In another study, Janin and co-workers did 

an analysis of the water molecules trapped at the protein–protein interfaces of 115 homodimeric 
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proteins and 46 protein–protein complexes, and compared them with 173 large crystal packing 

interfaces representing nonspecific interactions. They observed different patterns of hydrations: 

packed interfaces have an average of 15 waters per 1000 Å
2
 of interface area while homodimeric 

interfaces have 10–11 waters per 1000 Å
2
.  They also observed that water molecules permeate 

the majority of packed interfaces, which they termed “wet” interfaces, whereas in homodimers 

the majority of water molecules form a ring around the interface, in which case they termed the 

interface “dry”. Also worth noting was that water molecules at interfaces prefer to form 

hydrogen bonds with the main-chain carbonyl and the charged sidechains of Glu, Asp, and Arg 

that are more or less the same in homodimers and packed interfaces. These interactions are 

similar to those observed on other parts of the protein surface [27].
 

Pisabarro and co-workers performed an MD study on 17 protein complexes from two 

families of different interfacial nature. They showed that water molecules in protein interfaces 

contribute to the conservation of protein interactions by allowing sequence variability in the 

interacting partners. They have also shown that interfacial residues interacting through water are 

more mobile than directly interacting residues, but less mobile than solvent exposed residues. 

They also observed that water molecules involved in protein-water-protein interactions have 

significantly longer residence time than those on the protein surface [28]. In another analysis, 

Pisabarro and co-workers divided a dataset of protein-protein interfaces into obligate and 

transient interfaces. Obligate being defined as proteins that bind and fold simultaneously while 

transient referring to proteins that fold separately and then bind. They found that 40.1% of the 

interfacial residues are interacting through water and that an average of five water molecules per 

1000 Å
2
 mediate interactions between the two interfaces. Moreover, they found that 14.5% of the 

interfacial residues only interact through a water molecule and termed them “wet spots”. They 
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also observed that interacting residue pairs vary whether the residue is interacting directly “dual” 

or not “wet spot”. Dually interacting residues interact more frequently by their long polar 

sidechains, whereas wet spots prefer to interact mainly by their main-chain and short polar 

sidechains. It was also noted that the contribution of wet spots is quite significant. They 

concluded that the role of water molecules in transient interfaces is mainly to hydrate the charged 

sidechains, whereas in obligate interfaces water molecules tend to mediate a broad range of 

main-chain interactions to complement the hydrophobic interactions forming the interface [29].
 

Kellogg and colleagues used HINT to model the free energy of dimer−tetramer 

association in several deoxy-hemoglobin double mutants that have been solved 

crystallographically and characterized thermodynamically. Initially estimated free energies for 

these mutants were conducted without including crystallographically conserved water molecules, 

which resulted in an underestimation of the experimentally calculated loss in free energy 

observed for each mutant dimer−tetramer association. Conversely, when crystallographic waters 

interacting at the dimer−dimer interface of each mutant were included, free energies that are 

more accurate were estimated with respect to experimental data.  This study showed that 

differences in the stability of bound water molecules among other things contribute to free 

energy changes observed for each mutant structure. Surprisingly they found that bound waters 

may account for up to 100% of observed free energy changes, and on average accounted for 

approximately 15% of the total estimated free energy change in those mutants [11]. 
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1.2 Pyridoxal kinase (PLK) – Serine hydroxymethyltransferase (SHMT) complex: 

1.2.1 Pyridoxal 5’-phosphate (PLP)-dependent enzymes:  

Vitamin B6 refers to six interconvertable compounds: pyridoxine (PN), pyridoxamine 

(PM), pyridoxal (PL) and their 5‟-phosphorylated forms (PNP, PMP and PLP, respectively). PLP 

is the biologically active and arguably the most important vitamin in nature, since it is used as 

enzyme cofactor by several enzymes. PLP-dependent enzymes catalyze several important 

biochemical reactions such as amino acid and lipid metabolism, carbohydrate breakdown, 

neurotransmitter synthesis, heme synthesis, nucleic acid synthesis. In recent years, an additional 

function of B6 vitamers (different vitamin B6 forms) as reactive oxygen species (ROS) 

scavengers and factors able to increase resistance to biotic and abiotic stress has been 

demonstrated in plants [30, 31]. PLP and PN may also function as regulators of membrane ion 

transporters [32-33], and have been found to bind to steroid receptors [34] and to modulate 

transcription factors [35,36].  Although all living beings rely on vitamin B6 for their existence, 

only microorganisms and plants are able to synthesize it de novo. All other organisms, including 

mammals acquire vitamin B6 from nutrients and interconvert its different forms to PLP. The 

enzymes involved in the biosynthesis of the B6 into PLP are pyridoxal kinase and pyridoxine 5‟-

phosphate oxidase via B6 salvage pathway [37-40]. 

1.2.2 Pyridoxal Kinase (PLK):  

PLK phosphorylates the 5‟ alcohol group of PN, PL and PM to form PNP, PLP and PMP 

respectively. This reaction occurs by the transfer of γ-phosphate from ATP to the 5‟-methyl 

hydroxyl group, as shown in Figure 1.1. PLK is found in most organisms. It is encoded by the 

gene pdxK, which is highly homologous among prokaryotes and eukaryotes [38]. Some 
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organisms possess an additional PLK beside the one coded by the pdxK gene. This is termed 

PLK 2 and coded by the gene pdxY [41]. PLK 2 shares very low sequence identity (~30%) with 

PL kinase [41]. This protein also functions in the salvage pathway. However, it has a much lower 

activity than PLK, which makes its exact role in vitamin B6 metabolism unclear. The PNP and 

PMP synthesized by PLK are further oxidized to PLP by a flavin mononucleotide (FMN)-

dependent pyridoxine 5‟-phosphate (or pyridoxamine 5‟-phosphate) oxidase (PNPOx) [42]. PLP 

synthesized by these two enzymes is then transferred to apo B6 (PLP-dependent) enzymes to 

form the holo B6 enzymes for their catalytic activities. In a salvage pathway, PLP, PNP and PMP 

that are ingested or already in in vivo are dephosphorylated by phosphatase class of enzymes to 

PL, PN and PM respectively, and then recycled to form PLP as described above. 

 

Figure 1.1. Pyridoxal Kinase catalyzed reactions: PLK phosphorylates the 5‟ alcohol group of 

PN, PL and PM to form PNP, PLP and PMP respectively. 
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1.2.3 Pyridoxal 5’-phosphate (PLP) metabolic pathways:  

Until now the exact mechanisms of the control of PLP concentration in the cells is not yet 

fully established. However, what is certain is that to achieve the important task of neutralizing 

excess PLP, the cell utilizes more than one metabolic pathway. Zhao and Winkler observed 

feedback inhibition of pyridoxine 5'-phosphate oxidase, a key enzyme in vitamin B6 

biosynthesis, by its product PLP with a Ki of 8 μM [43,44]. Safo‟s group also observed that PLP 

is involved in feedback inhibition of PLK through the formation of a ternary complex with 

MgATP thus shutting down a major pathway for synthesis of metabolically active PLP [39,44]. 

These feedback inhibition mechanisms ensure that PLP synthesis does not exceed the cell needs. 

However to metabolize any unused PLP that may exist, the cell employs a special phosphatase to 

dephosphorylate PLP to its harmless form PL [45]. Compared to 30 μM of PLK, PLP 

phosphatase has a Km of 2.5 μM which explains its importance to the control of PLP levels 

within the cells [37,45]. Furthermore, PLP phosphatase was found to be in various species with a 

wide-spread distribution throughout different tissues in mammals especially the brain [45]. This 

could be attributed to the fact that nerve cells are the most susceptible to PLP toxicity. This tight 

regulation of PLP, plus the fact that free PLP level is maintained at a very low concentration in 

the body (1 μM in eukaryotic cells) raises a very important question of how the PLP-dependent 

enzymes manage to get sufficient PLP to maintain their activities [44].  

1.2.4 Mechanism of transfer of PLP from PLK to SHMT and other PLP-dependent enzymes:  

The traditional model of how PLP is transferred to PLP-dependent enzymes is through 

the release of PLP from PLK or PNPOx into the bulk solvent, which is then acquired by PLP-

dependent enzymes [44]. However, a shortcoming of this model is that it does not explain why 
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free PLP is always found to be scarce in vivo.  Moreover, release of free PLP into the bulk 

solvent would render it available for destruction by PLP phosphatase. A second alternative 

model is substrate channeling between PLP synthesizing enzymes and PLP dependent enzymes 

[44]. In a study done by Hutchmacker et al., it was found that enzymes catalyzing reactions that 

share one or more metabolites are more likely to interact allowing the transfer of substrates from 

one active site to the next without releasing it into the bulk solvent. This micro-

compartmentalization of substrates results in more efficient metabolism by decreasing the transit 

time and increasing local substrate concentration with respect to the whole cell [46]. As an 

example for channeling, Michael F. Dunn and co-workers were among the first to observe 

substrate channeling. They described the channeling of indole between the alpha- and beta- 

subunits of tryptophan synthase in the last two steps of L-tryptophan synthesis (Figure 1.2) [47].  

Others also described substrate channeling (Moriguchi et al. and Hakobyan et al.) [48,49]. Y.-H. 

Percival Zhang recently described methods for the biotechnological utilization of substrate 

channeling in areas such as multi-functional fusion proteins, metabolic engineering, synthetic 

cellulosomes and recombinant cellulolytic microorganisms and co-immobilization of multiple 

enzymes [50].
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Figure 1.2. Tryptophan synthase channel: Indole channeling between alpha- and beta- subunits 

of tryptophan synthase [47]. 

The Substrate Channeling model might explain how PLP is transported securely and 

without causing damage to the cell. Although it is challenging to prove this theory, there are 

studies suggesting that PLP channeling between these enzymes might be the case here. In a study 

by Schirch's group using E. coli cell extract, it was shown that activation of the apo PLP-

dependent enzyme, serine hydroxymethyltransferase (apo SHMT) into the holo form (holo 

SHMT-PLP) was more efficient using a PNPOx-PLP complex compared to the use of free PLP. 

They hypothesized that free PLP in the extracts was forming non-specific aldimines with other 

cell components like proteins [51]. In another study, Churchich's group used fluorescence 

spectroscopy, affinity chromatography and a trapping agent (alkaline phosphatases) to show that 

PLK forms a complex with aspartate aminotransferase (AAT), another PLP-dependent enzyme, 

with a Kd of 3 μM, and that the trapping agent did not inhibit the transfer of PLP to the PLP-
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dependent enzyme [52].  This was also confirmed by a recent study by Cheung et al., who used 

fluorescence polarization and surface plasmon resonance biosensor analyses and showed that 

PLK can bind to AAT and glutamate decarboxylase with affinity constants in the low μM range 

[53]. All these studies suggest that PLP is likely transported by channeling.
 
 

In several unpublished studies by Safo‟s group, the activation of apo-SHMT or apo-AAT 

with free PLP or an equivalent amount of tightly bound PLP on PNPOx and PLK, were carefully 

monitored in the presence and absence of PLP-phosphatase. It was observed that activation of 

apo-B6 enzymes is severely compromised when free PLP was used, while the phosphatases had 

no effect on the transfer if the activation is conducted using PLK or PNPOx with tightly bound 

PLP. The group also used fluorescence polarization techniques to study the binding interactions 

between E. coli PLK or PNPOx and several B6 enzymes, including E. coli SHMT, AAT and l-

threonine aldolase, as well as glycogen phosphorylase. The results showed that both PLK and 

PNPOx form specific interactions with every B6 enzyme tested, with Kd ranging from 0.3 to 56 

μM. The strongest affinity was between AAT and both PLK and PNPOx (~ 0.3 μM), while 

glycogen phosphorylase showed the weakest interaction, 56 μM with PLK and 25 μM with 

PNPOx. It is worth noting that the most abundant B6 enzyme in the body is glycogen 

phosphorylase, which compensate for its weak interactions with PLK and PNPOx, this also 

ensures that it does not outcompete other B6 enzymes for PLP [44]. To confirm the specificity of 

these interactions, control experiments with several non-B6 enzymes, including PLP-

phosphatase, lysozyme, lactate dehydrogenase, and bovine serum albumin were used and did not 

show any specific binding with either B6 salvage enzyme. In addition, affinity pull down 

chromatography experiments were performed and further confirmed the specificity of the 

interactions between the B6 salvage enzymes and PLP-dependent enzymes. 
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1.3 HINT (Hydropathic INTeractions):  

The cornerstone of analysis presented here in this thesis is HINT (Hydropathic 

INTeractions), a force field that describes and quantifies all interactions in the biological 

environment through the exploitation of the interaction information implicit in Log Po/w. It is 

considered a "natural" force field because it is totally based on empirical energetic terms, which 

are defined by real experiments. Encoded within it, are all the types of interactions including 

coulombic, hydrogen bond and hydrophobic interactions, which are expected to be found 

between molecules in the biological environment. Thus, it also encodes a free energy force field 

and by including entropy and solvation/desolvation besides the other enthalpic terms [8-14]. The 

HINT score (HTOTAL) is a double sum over all atom-atom pairs of the product (bij) of the 

hydrophobic atom constants (ai, partial log Poctanol/water) and atomic solvent accessible surface 

areas (Si) for the interacting atoms, mediated by a function of the distance between the atoms: 

 HTOTAL = ∑i ∑j bij = ∑i ∑j (ai Si aj Sj Tij Rij + rij)     (1.1) 

where Rij is a simple exponential function, e
-r
 [13], rij is an adaptation of the Lennard-

Jones function [54,55], and Tij is a logic function assuming +1 or -1 values, depending on the 

polar (Lewis acid or base) nature of interacting atoms. 

1.4 Rational and specific aims:  

1.4.1 Analysis of water molecules at protein-protein interfaces:  

Studies discussed above provide compelling evidence that understanding protein-water-

protein interactions is an important part of understanding protein-protein complexes and their 

biological roles. It is not simply the case that water molecules can bridge two proteins: such 
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contacts could be encoding for significant information that allows the interactions to be 

discriminating. Harnessing such information will be valuable in order to deepen our 

understanding of the rules governing the formation as well as the dissociation of 

macromolecules. This knowledge may be significantly important in the field of designing small 

molecule inhibitors for protein-protein complexes. Protein-protein complexes are under intense 

scrutiny as possible targets for new therapies, particularly in cancer and amyloidogenic diseases 

[56-60]. It has proven difficult to design molecules that can inhibit specific protein-protein 

associations due to the relative paucity of structural data on relevant complexes, although the 

number of such structures is growing [61]. 

Another area where this knowledge will be of great importance is in the development of 

computational approaches for building reliable models of protein-protein complexes, which is 

currently hindered due to the lack of knowledge. In the absence of specific knowledge, there are 

nearly an infinite number of ways to dock two irregularly shaped objects with a relatively small 

surface contact area.  This contrasts to the better-defined and easier problem of small molecule 

docking in pockets of proteins.  Even there, however, no universal scoring function has emerged 

that can confidently predict either the docked conformation or the free energy of binding [62-64].  

Despite these major issues, computational algorithms and protocols are being developed for 

macromolecular docking [65-69]. 

 Looking at protein-water-protein interaction, the highest-level view is that there are three 

distinct roles for waters at these interfaces: bridging, i.e., having significant interactions with 

both proteins; non-bridging, i.e., having significant interactions with only one of the two 

proteins; or simply trapped without significant interactions with either protein.  More detailed 

analyses may reveal additional details such as whether these classifications are dependent on the 
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resolution of the underlying X-ray crystallographic experiment, e.g., are trapped waters more or 

less likely to be detected at high-resolution?  Do different residue types have differences in 

interaction preferences for waters in these three categories, e.g., what residue types are most 

often involved in interactions with bridging waters?  Water is unique in its ability to 

simultaneously provide two hydrogen-bond acceptor sites and two donor sites.  Thus, it can 

effectively bridge in every way possible: donor-to-donor, donor-to-acceptor and acceptor-to-

acceptor.  

1.4.2 Developing a model for PLK-SHMT interaction:  

PLP has a reactive aldehyde function which interacts with almost all nucleophiles, 

including proteins other than vitamin B6 enzymes, which may cause neurological as well as non-

neurological toxicities. The in vivo concentration of free PLP is thus maintained very low (~1 

µM) by hydrolysis of free PLP back into PL by phosphatases and conversion of free PLP into 4-

pyridoxic acid, and possibly by mechanisms such as feedback inhibition of PLK and PNPO by 

PLP. It is, therefore, very interesting to determine how, in spite of the low level of in vivo free 

PLP, as well as the activity of phosphatases, sufficient PLP gets transferred from PNPO and PLK 

to the vitamin B6 dependent enzymes. The hypothesis here is that PLK or PNPOx specifically 

bind with PLP-dependent enzyme and channel the PLP from the former enzymes to the latter 

enzymes. This chapter focuses on developing a model for the protein-protein interaction and 

channel formation between PLK and SHMT as well as the identification of water molecules and 

their relevance to this protein-protein complex. This model might answer the question of whether 

these interactions are specific to each enzyme or whether they share a common binding site. In 

addition, this model might be useful for guiding site directed mutagenesis studies to further 
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confirm channeling; furthermore, this model might be useful in developing inhibitors for that 

protein-protein interaction providing a new drug target for cancer chemotherapy. 

This study is divided into two specific aims: 

1. A detailed analysis of water molecules at protein-protein interfaces as well as quantifying 

their contributions with respect to different residue types. 

2. Analyze the effect of adding interfacial water molecules in developing a model for the 

protein-protein complex of PLK-SHMT 
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CHAPTER 2 

WATER MOLECULES AT PROTEIN-PROTEIN INTERFACES: A DETAILED ANALYSIS 

AND QUANTIFICATION OF THEIR CONTRIBUTIONS WITH RESPECT TO DIFFERENT 

RESIDUE TYPES. 

 

 

 

2.1 Introduction: 

Over the last decade, there has been a growing interest in understanding and exploiting 

protein-protein interactions as potential new routes to disease therapeutics [1-8].  It is believed 

that if one or more critical, but often transient, protein-protein interactions could be inhibited by 

a peptidic or small molecule agent, this could lead to a novel and specific approach for treatment 

of a wide variety of human diseases.  The understanding of numerous cell cycle pathways that 

we have developed has been nothing short of revolutionary, and these pathways repeatedly 

invoke protein-protein interactions, but to date few therapeutics have resulted from this 

knowledge [2].  One reason is that our structural knowledge of protein-protein complexes is 

lagging, largely because experimental X-ray crystallographic structure determinations of these 

complexes are demanding [9,10], principally due to the difficulties in co-crystallizing the 

involved proteins [11], which in vivo are often transiently associated and disordered [12], in 

diffraction-quality crystals.    

Nonetheless, the RCSB Protein Data Bank [13] contains several hundred protein-protein 

complexes [9], although the collection is somewhat biased towards a few classes, e.g., antigen-

antibody complexes.  Whether the interactions at these interfaces differ from the interactions 

between ligands and proteins, between polynucleotides and proteins, or within a protein is a 
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widely explored issue.  To this aim, an in-depth assessment of the role of water molecules 

located at protein-protein interfaces is particularly relevant.  

This chapter describes a detailed analysis of protein-protein interfaces in 179 high-

resolution (better than 2.30 Å) X-ray crystal structures of protein-protein complexes extracted 

from the RCSB Protein Data Bank [13].  All water molecules within 4.0 Å of both proteins, 4741 

unique waters, comprised the data set.   

2.2 Materials and Methods: 

2.2.1 Data set:   

The protein-protein complexes data set was obtained from the RSCB Protein Data Bank 

[13] by applying search filters for several structural criteria.  First, the structures were required to 

have at least two separate protein entities where each was at least 100 amino acids in length.  

Structures with either DNA or RNA were excluded as were structures with sequence identity 

similarity > 50% to another protein complex in the data set.  The data set was restricted to 

structures with resolutions 2.3 Å and better.  This set (1331) of PDB structures consisted of both 

homo and hetero protein complexes.  Further screening of the structures‟ description isolated 

protein-protein complexes (861) for individual inspection where only structures comprised of 

completely different proteins, i.e., not subunits or chains of the same protein, were retained.  

Finally, 179 structures (Table 2.1) were randomly selected from this set for analysis. 
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Table 2.1.  Protein complexes examined in study with interface 

parameters and water roles. 

PDB 

ID 

Res. 

(Å) 

All 

H2O 

Interface In
terfa

ce H
2 O

 

Relevant to: 

0 1 2 

1a4ya 2.00 133 A / B 16 3 3 / 3 7 

1avaa 1.90 748 A / C 38 8 9 / 9 12 

1avw 1.75 142 A / B 11 1 2 / 6 2 

1blx 1.90 294 A / B 33 8   7 / 10 8 

1d2za 2.00 266 AC / B 30 9 5 / 9 7 

1eer 1.90 298 A / BC 33 8 11 / 9 5 

1ev2a 2.20 263 C / FGH 14 2 2 / 4 6 

1f3v 2.00 208 A / B 12 3 4 / 3 2 

1fns 2.00 636 A / LH 21 5 1 / 5 10 

1fyha 2.04 481 AD / B 24 6 8 / 4 6 

1g4y 1.60 199 B / R 19 4 4 / 5 6 

1ghq 2.04 666 A / BC 20 4 7 / 2 7 

1gpqa 1.60 635 B / CD 38 9 12 / 6 11 

1he1a 2.00 712 A / C 28 10 2 / 15 1 

1hx1 1.90 359 A / B 28 6 6 / 10 6 

1i2ma 1.76 475 A / B 28 2 5 / 11 10 

1i7wa 2.00 669 A / B 24 7 8 / 2 7 

1iqd 2.00 477 AB / C 25 8 5 / 9 3 

1jiw 1.74 592 I / P 29 7 4 / 14 4 

1jyoa 1.90 629 AC / F 37 10 15 / 5 7 

1ksh 1.80 124 A / B 13 2 4 / 3 4 

1ktz 2.15 163 A / B 17 1 3 / 5 8 

1kxp 2.10 388 A / D 42 11 13 / 9 9 

1kxqa 1.60 2807 BD / E 45 4 11 / 14 16 

1lk3a 1.91 1203 LHM / B 23 3 6 / 6 8 

1nf3a 2.10 423 A / C 16 2 6 / 6 2 

1nmb 2.20 83 LH / N 8 2 2 / 1 3 

1o94a 2.00 2149 A / CD 20 2 9 / 4 5 

1okk 2.05 568 A / B 43 7 16 / 14 6 

1ors 1.90 403 A / C 6 1 3 / 0 2 

1osp 1.95 328 HL / O 23 2 8 / 9 4 

1ow3 1.80 374 A / B 39 9 7 / 9 14 

1oy3 2.05 248 BC / D 24 8 5 / 4 7 

1pxva 1.80 458 A / C 27 7 8 / 5 7 

1q40a 1.95 331 A / BD 29 7 10 / 7 5 

1r8s 1.46 350 A / E 31 11 9 / 5 6 

1rewa 1.86 185 ABD / C 16 1 4 / 7 4 

1slu 1.80 137 A / B 5 4 0 / 1 0 

1sq2 1.45 189 L / N 20 1 11 / 1 7 

1t6ga 1.80 1074 AB / C 55 11 15 / 18 11 

1ta3 1.70 785 A / B 52 12 7 / 12 21 

1tuea 2.10 969 M / LQ 16 4 4 / 3 5 

1tx4 1.65 497 A / B 44 12 7 / 17 8 

1tx6a 2.20 492 ABC / I 20 5 3 / 6 6 

1unna 1.90 947 AB / C 41 11 15 / 7 8 

1usu 2.15 227 A / B 13 2 2 / 6 3 

1v7p 1.90 463 AB / C 37 8 10 / 8 11 

1vg0 2.20 438 A / B 32 8 11 / 7 6 

1wa5 2.00 472 AC / B 28 8 10 / 7 3 

1wwwa 2.20 262 VW / X 21 7 4 / 6 4 

1wxcb 1.20 393 A / B 25 7 2 / 8 8 

1xg2 1.90 453 A / B 41 13 3 / 14 11 

1xkp 1.70 179 A / BC 26 9 9 / 1 7 

1xx9a 2.20 260 AB / C 15 2 6 / 4 3 

1yara 1.90 3470 DEF / O 19 6 5 / 5 3 

1ycs 2.20 275 A / B 7 0 2 / 2 3 

1yro 1.90 830 BD / C 46 10 10 / 13 13 

1yu6 1.55 329 B / D 17 6 4 / 3 4 

1z5y 1.94 254 D / E 17 5 2 / 8 2 

1zc3a 2.00 413 A / D 23 9 7 / 4 3 

1ze3 1.84 510 CH / D 27 5 4 / 12 6 

1zhh 1.94 333 A / B 32 4 9 / 9 10 

2a2q 1.80 722 HL / T 57 10 14 / 15 18 

2a9k 1.73 210 A / B 21 4 8 / 7 2 
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2aq2 1.80 231 A / B 21 4 5 / 6 6 

2arp 2.00 171 A / F 19 5 5 / 6 3 

2b2xa 2.20 226 A / HL 8 0 3 / 1 4 

2bcg 1.48 923 G / Y 48 12 14 / 13 9 

2bexa 1.99 616 AB / C 36 4 14 / 4 14 

2bkka 2.15 347 AC / B 16 7 3 / 3 3 

2bo9a 1.60 1153 AC / D 56 14 13 / 17 12 

2cio 1.50 161 A / B 4 1 1 / 1 1 

2co7 1.80 274 A / B 29 10 7 / 5 7 

2dfka 2.15 581 AC / B 47 14 11 / 17 5 

2e2d 2.00 323 A / C 34 8 14 / 9 3 

2ekea 1.90 375 A / B 21 3 4 / 7 7 

2es4a 1.85 843 AB / D 55 18 14 / 13 10 

2f2l 2.10 195 A / X 9 5 0 / 3 1 

2f93 2.00 68 A / B 3 1 0 / 1 1 

2f95 2.20 30 A / B 3 1 0 / 2 0 

2fd6a 1.90 336 ALH / U 13 4 6 / 0 3 

2fdba 2.28 125 MN / P 19 4 6 / 4 5 

2fm8 2.20 612 AB / C 53 15 16 / 12 10 

2fu5a 2.00 301 A / C 12 2 2 / 3 5 

2g2u 1.60 331 A / B 39 11 4 / 13 11 

2gc7a 1.90 1234 ABDE / C 17 7 4 / 3 3 

2gh0a 1.92 236 A / C 8 3 1 / 2 2 

2gooa 2.20 327 A / BC 36 8 7 / 18 3 

2hqsa 1.50 2812 DF / G 53 13 19 / 12 9 

2iaaa 1.95 989 ABD / C 13 8 1 / 4 0 

2j12 1.50 287 A / B 37 17 9 / 9 2 

2j59a 2.10 1656 ABCDF / N 45 11 4 / 19 11 

2jjsa 1.85 540 AB / D 39 8 10 / 18 3 

2npta 1.75 320 A / D 15 1 8 / 4 2 

2nqd 1.75 564 A / B 36 11 7 / 14 4 

2ns1 1.96 498 A / B 20 7 6 / 3 4 

2nxya 2.00 806 BCD / A 44 9 14 / 11 10 

2nz8 2.00 242 A / B 42 6 19 / 7 10 

2odea 1.90 655 A / B 44 11 8 / 13 12 

2omz 1.60 800 A / B 61 9 25 / 12 15 

2ot3 2.10 463 A / B 25 9 5 / 6 5 

2oul 2.20 171 A / B 18 9 6 / 1 2 

2p45 1.10 319 A / B 21 5 8 / 3 5 

2q0oa 2.00 484 AB / C 43 12 12 / 12 7 

2q4ga 1.95 854 WY / X 40 7 16 / 6 11 

2r25 1.70 238 A / B 21 3 7 / 9 2 

2sic 1.80 258 E / I 17 4 5 / 6 2 

2v9t 1.70 385 A / B 34 11 2 / 17 4 

2vol 1.95 241 A / B 21 2 4 / 10 5 

2vsm 1.80 705 A / B 54 8 18 / 19 9 

2vxt 1.49 593 HL / I 33 5 11 / 4 13 

2wel 1.90 405 A / D 14 2 4 / 7 1 

2wwx 1.50 117 A / B 21 2 6 / 8 5 

2wy3a 1.80 639 A / B 32 9 18 / 4 1 

2xg5 2.00 202 A / B 32 12 6 / 8 6 

2xgy 1.80 367 A / B 30 15 2 / 10 3 

2xna 2.10 249 AB / C 10 1 3 / 3 3 

2xqya 2.05 952 E / JK 27 6 3 / 11 7 

2yvj 1.90 78 A / B 1 1 0 / 0 0 

2z0d 1.90 314 A / B 46 12 17 / 10 7 

2z3qa 1.85 228 ACD / B 24 5 12 / 5 2 

2zd1 1.80 626 A / B 69 28 21 / 15 5 

2zfd 1.20 236 A / B 24 6 7 / 5 6 

3a4u 1.84 189 A / B 16 5 3 / 3 5 

3a8ka 1.95 1495 AB / E 33 9 4 / 14 6 

3a98a 2.10 133 AC / D 18 2 2 / 6 8 

3bh7 1.90 219 A / B 26 11 6 / 5 4 

3bn3 2.10 226 A / B 22 6 4 / 9 3 

3bn9a 2.17 824 A / EF 32 5 9 / 10 8 

3bwu 1.76 641 CD / F 46 17 6 / 17 6 

3bx1a 1.85 574 AB / C 28 8 5 / 11 4 

3bx7 2.10 186 A / C 31 16 9 / 5 1 

3cbj 1.80 243 A / B 27 11 7 / 5 4 

3cip 1.60 461 A / G 28 9 13 / 2 4 

3cx8 2.00 298 A / B 33 10 10 / 7 6 

3d85a 1.90 906 ABD / C 30 6 11 / 3 10 

3d9a 1.20 683 LH / C 33 4 8 / 4 17 

3ddc 1.80 115 A / B 18 7 7 / 1 3 
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3dlq 1.90 309 I / R 26 6 8 / 8 4 

3egga 1.85 521 AB / C 39 9 17 / 5 8 

3egv 1.75 415 A / B 42 13 13 / 9 7 

3evs 2.10 51 B / C 4 1 0 / 1 2 

3f62 2.00 120 A / B 13 5 5 / 2 1 

3f75 1.99 167 A / P 28 4 8 / 8 8 

3ffd 2.00 204 AB / P 11 2 4 / 1 4 

3fhi 2.00 159 A / B 18 4 11 / 3 0 

3g5oa 2.00 173 AD / C 17 5 6 / 5 1 

3gewa 2.00 299 AD / C 24 8 6 / 4 6 

3gmwa 2.10 372 A / B 14 2 4 / 4 4 

3grw 2.10 274 A / LH 29 10 8 / 3 8 

3hct 2.10 195 A / B 12 3 4 / 3 2 

3heia 2.00 2756 CGIO / D 37 10 13 / 11 3 

3hg0a 2.10 446 ABC / D 15 3 3 / 6 3 

3hh2a 2.15 349 AB / C 23 6 5 / 7 5 

3hy2a 2.10 321 AB / X 30 14 5 / 8 3 

3hzh 1.96 158 A / B 20 9 4 / 5 2 

3jza 1.80 246 A / B 37 8 9 / 12 8 

3k2ma 1.75 286 A / CD 23 4 6 / 5 8 

3kdfa 1.98 260 BD / C 15 4 3 / 6 2 

3kdj 1.88 170 A / B 9 3 1 / 3 2 

3kf6 1.65 191 A / B 22 7 5 / 4 6 

3kld 2.00 415 A / B 21 4 7 / 5 5 

3kmu 1.80 298 A / B 15 3 4 / 5 3 

3kyj 1.40 273 A / B 16 8 6 / 0 2 

3l9j 2.10 246 C / T 16 0 2 / 5 9 

3lizc 1.80 870 A / HL 43 13 11 / 14 5 

3lxr 1.68 484 A / F 48 16 11 / 17 4 

3m18 1.95 261 A / B 34 3 12 / 9 10 

3m7f 2.00 141 A / B 11 5 3 / 1 2 

3ma2a 2.05 145 AD / B 12 4 6 / 0 2 

3ma9 2.05 442 A / LH 23 5 4 / 10 4 

3mc0a 2.00 438 A / BD 22 7 8 / 3 4 

3mdya 2.05 687 AC / B 21 4 3 / 7 7 

3n3aa 1.99 280 A / D 15 4 5 / 3 3 

3nce 2.00 452 A / B 33 11 8 / 8 6 

3og6 2.10 266 A / B 23 7 1 / 8 7 

3oky 2.19 389 A / B 26 9 6 / 1 10 

3orva 1.91 1301 A / CDF 31 11 11 / 5 4 

3q3j 1.97 38 A / B 3 0 1 / 1 1 

Notes: 
a
These complexes have multiple protein-protein 

interfaces – only one (as indicated) was selected for this study; 

b
Three waters (HOH254, HOH281 and HOH282) were deleted 

because of steric clashes; 
c
One water (HOH412) was deleted 

because of steric clashes 
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The downloaded coordinate files were prepared by first removing ligands or 

cofactors other than water.  Then, using Sybyl 8.1 [14], hydrogen atoms were added and 

minimized (Tripos forcefield, with Gasteiger-Hückel charges and distance-dependent 

dielectric) to a gradient of 0.01 kcal mol
-1

 Å
-1

 while the non-hydrogen atoms were treated 

as an aggregate.  Water molecules that were within 4.0 Å from atoms on both of the 

interacting proteins were retained with each protein-protein complex.  Together, the 

water data set is comprised of 4741 unique water molecules, which is 5.4% of all waters 

in these complexes (ranging from 0.5% to 17.9%).  

2.2.2 Hydropathic Analysis:   

Each model contains two proteins and an array of solvents, and was analyzed with 

HINT [15,16] by computing intermolecular scores between the proteins and the 

interfacial solvent arrays. HINT parameters and controls were as in previous studies 

[15,19-21]: partition calculations were performed with the “dictionary” method for the 

proteins with „essential hydrogens‟, where polar hydrogens are treated explicitly and non-

polar hydrogens are „united‟ with their parent non-polar heavy atom; the HINT option 

that corrects the Si terms for backbone amide nitrogens by adding 30 Å
2
 was used in this 

study to improve the relative energetics of inter- and intramolecular hydrogen bonds 

involving these nitrogens.  Water molecules were partitioned as a “solvent set” with 
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analogous HINT parameters.   Previous work [21,22] has suggested that approximately 

500 HINT score units correspond to -1.0 kcal mol
-1

 of free energy.   

 Each crystallographically observed water molecule‟s orientation was optimized by 

an exhaustive protocol [23] that maximizes the HINT score with respect to its 

surrounding environment by evaluating its interactions with a “receptor” created from 

atoms within 6.0 Å.  For water molecules, this optimization rewards hydrogen bond and 

acid/base interactions while penalizing acid/acid and base/base interactions and those 

with hydrophobic entities on either of the two protein surfaces.  Hydropathic interaction 

analysis was then performed with HINT for each of the optimized water molecules with 

respect to the two proteins with which it interacts.  The resulting data were tabulated by 

frequency and strength of interactions with each amino acid residue type.  In cases where 

a water molecule had significant interactions (> |10| HINT score units, approximately 

|0.02| kcal mol
-1

) with more than one residue on a protein, that water‟s count was 

fractionally distributed to interacting residues based on the absolute values of the relative 

HINT scores for those residues that interact with it, i.e.,  

 Wi = ∑n  { |Ai
c
| / ∑i |Ai| }         (2.1) 

where Ai
c
 are the interaction HINT scores by residue type (i) interacting with water n.  

Similarly, the fractions of interactions with interfacial water molecules arising from 

backbone and sidechain atoms were calculated by weighted counts with Ai
c
 representing 
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the interaction HINT scores by i, separated into c = sidechain or c = backbone subsets.  

Heat maps for frequency and interaction scores and map clustering were calculated and 

drawn with gplots package within R [24].   

2.2.3 Rank Algorithm:  

Rank represents the weighted number of potential hydrogen bonds for each water 

molecule with respect to a pseudo-receptor of atoms from the target molecule(s) 

surrounding the water.  Rank is calculated as: 

 Rank = ∑n { (2.80 Å/rn) + [ ∑m cos (θTd - θnm) ]/6 }     (2.2) 

where rn is the distance between the water‟s oxygen and the target‟s heavy atom n (n is 

the targets up to a maximum of 4).  This is scaled relative to 2.8 Å, the presumed ideal 

hydrogen bond length.  θTd is the optimum tetrahedral angle (109.5°) and θnm is the angle 

between targets n and m (m = n to number of valid targets).  The algorithm thus allows a 

maximum number of 4 targets (≤ 2 donors and ≤ 2 acceptors).  To properly weight the 

geometrical quality of hydrogen bonds, targets that have an angle less than 60° with 

respect to other (higher quality) targets are rejected [23]. 

 

 

 



www.manaraa.com

35 
 

2.2.4 Relevance:   

Relevance is a synthesis of HINT score and Rank [25].  Specifically,  

Relevance = {PR(|WR| + 1)
2
 + PH(|WH| + 1)

2
} / {(|WR| + 1)

2
 + (|WH| + 1)

2
}  (2.3) 

where PR is the percent probability for water conservation based on Rank and PH the 

probability based on HINT score.  WR and WH are the weights for these probabilities, 

respectively.   The values for PR, PH, WR and WH are as shown in Figure 2 of reference 

[25].  This relationship was derived with the expectation that water molecules with 

Relevance ≥ 0.5 would be conserved and those with Relevance < 0.5 would be non-

conserved because the waters analyzed in developing the training set were, by their 

nature, binary – either conserved and present in the ligand-bound complex or non-

conserved and absent in the complex.  

2.3 Results and discussion: 

2.3.1 The Water Relevance Metric:   

As described above, water Relevance [25] is a descriptor combining two metrics 

of structure: Rank [23] and HINT score [16], where each orientation-optimized water is 

scored against its environment.  Others [26,27] suggested the crystallographic B-factor as 

a predictor of water conservation, but it was found to be not useful for this data set [25].  

While Relevance was initially trained on and for protein-ligand complexes, the role(s) 
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that water molecules can play are independent of the stage: water will interact favorably 

with up to two hydrogen bond donors and up to two hydrogen bond acceptors, and will 

generally avoid interaction with hydrophobic functional groups, regardless of whether 

these groups are in small organic molecules or in proteins.   

The Relevance algorithm was applied to the set of water molecules at protein-

protein interfaces to understand their roles in these complexes.  The water set for each 

complex was comprised of all water molecules that were within 4.0 Å of atoms in both 

proteins.  This set, from 179 proteins, was comprised of 4741 unique water molecules, 

with between 1 and 69 waters (average 27) at the protein-protein interfaces.   Rodier et al. 

[28] reported 20 per interface in their study of 46 protein-protein complexes.  Figure 2.1 

illustrates the set of 16 unique water molecules for the human placental RNase inhibitor 

(hRI)- human angiogenin (hAng) complex (PDB 1a4y, 2.00 Å) [29].  The training and 

derivation of the Relevance metric specified that Relevance  0.5 corresponds to a water 

molecule that is conserved and largely static within a ligand binding pocket [25].  It is 

believed that this same Relevance score would also identify a water conserved at a 

protein-protein interface, and of the 4741 waters in this study, 37% (1741) have total 

Relevance  0.5.  
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Figure 2.1. Molecular model of human placental RNase inhibitor (hRI) (red)- human 

angiogenin (hAng) (blue) complex (1a4y):  Interface region; water molecules colored 

red are Relevant ( 0.25) with respect to hRI, blue with respect to hAng, yellow with 

respect to both hRI and hAng, and green with respect to neither (see Table 2.2). Of 

particular interest is the “hydrophobic bubble” enclosing the non-Relevant waters 

HOH59, HOH71 and HOH72 (green).  Note that these three waters are encompassed 

within a region of the cavity that is of hydrophobic character. 

More interesting are the evaluations of Relevance with respect to the partner 

proteins of the complexes.  Applying this original definition of Relevance ( 0.5 for each 
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protein) identifies only 43 waters (< 1%) as bridging.  Rodier et al. reported that 30% of 

waters at protein-protein interfaces are bridging, and while their definition of interaction 

is loose – the water must only be within 3.5 Å of a polar (N, O, S) protein atom to be 

counted as bridging [28] – here it is proposed that using an intermediate value of 

Relevance, such as 0.25, to flag association (or Relevance) with respect to a single 

protein, makes pragmatic sense.  Thus, after exhaustive optimization of all waters‟ 

orientations (vide supra), the Rank, HINT score and Relevance for each were calculated 

with respect to each protein and in total.  These data for 1a4y are listed in Table 2.2. 
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Table 2.2. Water metrics for human placental RNase inhibitor (hRI)- human angiogenin 

(hAng) complex (PDB 1a4y, 2.00 Å). 

W
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HOH1 1.29 409 0.566 2.13 -96 0.205 3.41 313 0.778 hRI 

HOH2 3.67 -64 0.481 1.18 70 0.333 4.85 6 0.640 Both 

HOH19 3.51 -26 0.495 1.24 92 0.360 4.74 66 0.687 Both 

HOH25 3.72 -25 0.529 1.31 68 0.347 5.03 44 0.682 Both 

HOH52 2.34 358 0.687 1.09 -174 -0.137 3.43 184 0.727 hRI 

HOH54 3.62 111 0.639 1.25 21 0.295 4.87 132 0.772 Both 

HOH56 1.05 335 0.419 0.95 30 0.264 2.00 365 0.678 Both  

HOH59 0.00 -35 -0.039 2.21 -236 -0.280 2.21 -271 -0.362 Neither 

HOH60 3.78 316 0.822 1.46 -40 0.230 5.24 275 0.924 hRI 

HOH61 2.30 271 0.627 2.60 141 0.563 4.90 412 0.948 Both 

HOH68 0.98 80 0.305 1.03 24 0.273 2.01 105 0.441 Both 

HOH70 1.05 -90 0.186 2.24 134 0.508 3.29 44 0.534 hAng 

HOH71 0.72 -7 0.196 0.00 -255 -0.299 0.72 -262 -0.342 Neither 

HOH72 0.89 -39 0.201 1.05 -321 -0.487 1.94 -360 -0.586 Neither 

HOH73 0.91 22 0.251 1.12 62 0.315 2.03 84 0.418 Both 

HOH74 1.32 -197 -0.191 2.38 105 0.490 3.70 -92 0.459 hAng 

 

Only 21% (1018) of the interface waters have Relevance  0.25 with respect to 

both proteins, 53% (2514) have Relevance  0.25 with one member of the protein pair 

and 26% (1209) are not Relevant with respect to either (see Figure 2.2).  This suggests 

that one-fifth of the waters found at a protein-protein interface are truly bridging, while 

one-fourth are merely trapped at the interface.  More than half of the waters are strongly 
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associated with one protein, and while they provide steric constraints for the protein-

protein association, they do not provide significant favorable energetic contributions to 

the association.  This is an important distinction, as these waters still likely influence the 

association in more subtle ways (vide infra).  While the choice of 0.25 as a threshold to 

determine the Relevance/non-Relevance of a water molecule with respect to a single 

protein is somewhat arbitrary, values smaller than 0.25 indicate a paucity of potential 

favorable interactions arguing against the water‟s conservation and values larger than 

0.25 would suggest even fewer bridging waters than reported by Rodier et al. [28]. 

Here a data set comprised of protein X-ray crystal structures with resolutions 

better than 2.30 Å was used to construct a representative set of high-quality water 

molecules.  The number of water molecules located and placed by crystallographers 

during refinement has been shown to be dependent on the resolution of the reflection data 

[30,31].  Thus whether, given the categories of waters defined here, there is a resolution-

dependence in the relative ratios of water molecules Relevant to zero, one or two proteins 

was investigated.  The hypothesis is that at poorer resolutions fewer non-Relevant water 

molecules would be located and placed in the electron density – presumably because they 

would be less ordered or conserved – and that the fraction of non-Relevant waters would 

decrease.  However, the relative ratios of water molecules throughout different 

resolutions for this data set plus a second small data set of 16 poorer resolution 

complexes (2.4 – 3.5 Å) are relatively the same (Figure 2.2).  Calculations performed for 



www.manaraa.com

41 
 

waters in a second small data set of 16 poorer resolution complexes (2.4 – 3.5 Å), where 

109 water molecules were located at the interfaces, revealed essentially the same 

fractions: 23 waters relevant to zero (21%), 62 waters relevant to one (57%) and 24 

waters Relevant to two (22%).  Crystallographic waters are seldom located in X-ray 

structures with resolutions poorer than 3.5 Å, and water placements from structures with 

resolutions between 2.5 and 3.5 Å may be considered somewhat unreliable.  Assuming 

that all of these low-resolution waters are not crystallographic mistakes or artifacts [10], 

these data pose an interesting question: can water molecules without a stabilizing role at 

an interface be “conserved”?  
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Figure 2.2. Relative fractions of waters with Relevance to neither (green), one (red) 

and both (blue) proteins for: full data set of 4741 waters from 179 protein X-ray 

structures of resolutions ≤ 2.3 Å; plus 109 waters from 16 structures with resolutions 

between 2.4 Å and 3.5 Å. 
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2.3.2 Residue Preferences for Interfacial H2O:   

Given the three general categories of interface waters we have described, the 

preferences these water molecules show for the types of amino acid residues within the 

interfaces were examined.  First, for all interface waters, the preferences are tabulated by 

interaction counts (Table 2.3).  As expected, the more polar residues, in particular Asp 

(11.9%) and Glu (11.3%), appear most often in interactions involving water at protein-

protein interfaces.  Cys (0.7%) is most rarely found.  However, the aliphatic hydrophobic 

residues (Ala, Gly, Ile, Leu, Pro and Val) are surprisingly prevalent with 4.5 – 7.8% 

frequency, notably more so than His, Met, Phe or Trp (< 2.3 %).  Glaser et al. [32] 

reported contact counts (within certain Cß- Cß cutoffs) at protein-protein interfaces that 

are generally similar except that Asp and Glu appear more than twice as frequently and 

Cys and Phe appear less than half as frequently in our water-mediated observations.  

Likewise, our results are in qualitative agreement with the report of Teyra and Pisabarro 

for “dual” and “wet” interactions between residues at protein-protein interfaces [33].  In 

their nomenclature, dual refers to an interaction that has both direct residue-residue 

interaction and water-mediated interaction, while wet refers to an interaction that is only 

water-mediated.  When examining these preferences for waters having productive and 

Relevant interactions with both proteins, the fraction arising from residue sidechains 

carrying hydrogen bond donors or acceptors is enhanced (Arg, 9.6%; Asp, 18.4%; Glu, 

17.0%) relative to those arising from hydrophobic sidechains.  For the cases where the 
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waters are Relevant with respect to neither protein, the opposite is true – as expected 

(Ala, 11.0%; Ile, 6.9%; Leu, 13.0%; Pro, 9.9%; Thr, 8.8%; Val, 9.1%).  However, as 

described by Teyra and Pisabarro [33], water interactions with non-polar residues may in 

some cases be energetically favorable from interactions involving backbone atoms (vide 

infra). 
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Table 2.3.  Frequencies and HINT scores of water molecules at protein-protein interfaces 

with respect to interacting amino acid residues. 
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Ala 320 -28.51 -422.3 133 -48.90 -444.7 158 -27.42 -436.8 29 -6.95 -242.5 

Arg 279 15.04 255.9 42 4.32 124.3 139 12.99 235.6 98 32.83 341.3 

Asn 229 9.96 205.9 37 2.20 71.6 125 12.07 242.0 67 13.97 213.3 

Asp 564 63.32 532.7 49 7.12 176.6 328 72.88 558.2 187 106.60 580.7 

Cys 32 0.29 42.7 7 0.36 65.4 17 0.11 16.2 8 0.64 79.1 

Gln 201 6.66 156.9 34 0.57 20.2 120 8.14 171.0 48 10.26 219.8 

Glu 535 54.91 486.8 50 4.73 114.2 312 64.03 515.6 173 92.11 542.9 

Gly 212 -9.89 -221.1 53 -11.15 -254.3 113 -10.87 -241.3 46 -5.98 -132.7 

His 75 2.71 170.8 13 1.36 130.6 42 2.38 142.6 21 5.15 251.9 

Ile 212 -21.49 -481.7 84 -36.71 -529.1 107 -20.31 -478.3 21 -6.31 -308.1 

Leu 369 -35.54 -456.8 157 -62.71 -484.2 179 -33.34 -467.7 33 -8.65 -267.3 

Lys 220 0.86 18.5 57 -5.16 -110.4 110 0.67 15.3 54 8.49 160.6 

Met 107 -9.63 -425.2 41 -16.30 -483.4 54 -9.63 -448.8 13 -1.68 -135.7 

Phe 75 1.25 79.7 16 0.16 12.2 40 1.83 113.9 18 1.14 63.3 

Pro 278 -22.61 -385.3 120 -36.76 -369.9 137 -22.18 -408.0 21 -6.86 -327.3 

Ser 260 -5.69 -103.8 69 -9.28 -162.8 137 -6.12 -112.3 54 -0.37 -7.0 

Thr 307 -19.10 -294.5 106 -34.25 -390.5 158 -18.75 -298.6 44 -1.93 -45.2 

Trp 52 1.62 148.1 10 0.55 67.2 26 1.48 143.9 16 3.21 205.0 

Tyr 147 6.13 198.0 23 1.64 87.3 81 6.92 214.3 43 9.52 225.6 

Val 267 -27.61 -489.7 110 -45.96 -503.8 131 -26.26 -503.2 26 -9.12 -360.7 

Notes:
 a

Weighted count is calculated as ∑
n
 { |Ai| / ∑i

 |Ai| }, where Ai are the interaction 

HINT scores by residue type (i) interacting with water n; 
b
HINT scores are averaged two 

ways: first, over all waters in set or Relevance subset, second, by frequency (weighted 

count) of that residue type in set or Relevance subset. 
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While optimizing and scoring, each water molecule in the present report was 

treated as a small ligand in a site defined by neighboring residues.  The average HINT 

score for the waters in the entire data set is -17 (G ~ +0.03 kcal mol
-1

); thus, the average 

interaction of a water with only one of its neighboring proteins would be half of that 

value, i.e., essentially negligible.   Table 2.3 lists the HINT score values for each of the 

twenty amino acid types, first by averaging over all waters in the data set, and second by 

averaging over all waters interacting (by weighted count) with that residue type.  The first 

average, over all waters, reveals the reason for the near zero value for the average 

interaction energy of an interfacial water with its environment: there is a complex mix of 

favorable and unfavorable interactions with water, depending on the residue type.  The 

latter average, weighted instead by the frequency of that particular water-residue 

interaction, represents the score that would be expected if a water interacted with only 

that residue and thus reveals the specific benefits of interacting with some residue types, 

e.g., Asp (-1.03 kcal mol
-1

), Glu (-0.95 kcal mol
-1

), or Arg (-0.50 kcal mol
-1

), vs. the cost 

of interacting with others, e.g., Pro (+0.75 kcal mol
-1

), Ala (+0.82 kcal mol
-1

), Met (+0.83 

kcal mol
-1

), Leu (+0.89 kcal mol
-1

), Ile (+0.94 kcal mol
-1

) or Val (+0.95 kcal mol
-1

).  The 

biggest surprise here is that Lys, while responsible for 4.6% of interactions with interface 

waters has, on average, a minimal contribution to the water score.  This is partly because 

Lys, if NZ is protonated as expected, is only a hydrogen bond donor and is unable to 

accept from water, but also, the long hydrophobic polymethylene sidechain of Lys may 
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be interacting unfavorably with some water molecules compared with the other “basic” 

residue Arg that has multiple polar atoms and can act as an acceptor through its sidechain 

 system.  Also, Lys with its flexible sidechain is more likely to be disordered and its 

atomic coordinates are thus less certain.   Furthermore, Jones and Thornton [34] noted 

that Lys frequency is depleted at protein-protein interfaces relative to protein surfaces. 

The differences in interactions between water molecules Relevant to zero, one and 

two proteins are instructive.  First, these waters have average HINT scores of -284 (+0.55 

kcal mol
-1

), 9 (-0.02 kcal mol
-1

) and 236 (-0.46 kcal mol
-1

), respectively.  Also, as 

calculated with the averages over all waters that are Relevant to zero, one or two proteins 

(Table 2.3), the interactions are dominated by Ala, Ile, Leu, Pro, Thr and Val (generally 

unfavorable, with negative HINT scores) for the waters Relevant to neither protein, and 

dominated by favorable interactions with Arg, Asp and Glu for the waters Relevant to 

both proteins. 

2.3.3 Sidechain and Backbone Preferences for Interface water:   

Teyra and Pisabarro [33] showed that a significant fraction of interface water 

molecules appear to be interacting with backbone atoms on one of both of the proteins.  

Rodier et al. calculate that 12% of water interactions at protein-protein interfaces are with 

backbone NH and 33% with CO [28].  Our analysis of backbone and sidechain 

interactions reveals interesting details: the average interaction score for a water with a 
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backbone atom [C, O, (OXT), CA, HA, N, HN, (HN2, HN3)] is favorable (57, -0.11 kcal 

mol
-1

), while on average the interaction with sidechain atoms is unfavorable (-74, +0.14 

kcal mol
-1

).  Obviously, this can be explained by the ability, although usually shielded by 

the sidechain, of the backbone to be both a hydrogen bond donor (via NH) and acceptor 

(via O).  Table 2.4 lists the weighted counts and average scores for backbone and 

sidechain interactions with water by residue type.  Calculations of weighted interaction 

counts, which are based on HINT scores of H-bond optimized structures and not simple 

distance metrics, suggest (Table 2.4) that only 21.5% of the water-protein interactions 

involve backbone atoms, and that the remaining 78.5% arise from sidechain atoms.  

Thus, while the backbone interactions are mostly favorable, they play a lesser role in 

describing the protein-protein interface than do the sidechain interactions.  The average 

scores, when weighted by the frequency of interactions for the residue types for either the 

backbone or sidechain (Table 2.4), clearly show that the backbone interactions are 

remarkably consistent and independent of residue identity.  These scores represent how 

strongly a single water would interact with a residue backbone (or sidechain) isolated 

from all other interactions. 
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Table 2.4. Frequencies and HINT scores of water molecules at protein-protein interfaces 

with respect to backbones and sidechains of interacting amino acid residues. 

Notes:
 a
Same as Table 2.3;

 b
Weighted count is calculated as ∑

n
 { |Ai| / ∑i

 |Ai| }, where Ai 

are the interaction HINT scores for the backbone or sidechain by residue type (i) 

interacting with water n; 
c
HINT scores are averaged two ways: first, over all waters in set 

 All Interacting with backbone Interacting with sidechain 

Residue 

Type 

Wtd. 

Count
a
 

Wtd. 

Count
b
 

Average HINT 

score
c
 

Wtd. 

Count
b
 

Average HINT 

score
c
 

   For All For Type  For All For Type 

Ala 320 63 5.39 403.2 257 -33.90 -625.9 

Arg 279 54 4.27 376.2 225 10.76 227.1 

Asn 229 54 4.44 388.6 175 5.52 149.4 

Asp 564 65 5.29 388.4 499 58.03 551.3 

Cys 32 18 1.47 390.3 14 -1.18 -393.1 

Gln 201 39 3.27 395.7 162 3.39 99.2 

Glu 535 51 4.13 384.7 484 50.79 497.5 

Gly
d
 212 212 -9.89 -221.1 0 0.00 --- 

His 75 20 1.71 410.0 55 1.00 85.5 

Ile 212 29 2.60 430.5 183 -24.09 -624.3 

Leu 369 53 4.78 429.2 316 -40.32 -604.9 

Lys 220 45 3.80 398.7 175 -2.94 -79.7 

Met 107 20 1.82 440.2 88 -11.44 -618.2 

Phe 75 33 2.81 409.7 42 -1.56 -175.3 

Pro 278 45 2.81 298.7 234 -25.43 -516.0 

Ser 260 71 5.39 358.2 189 -11.09 -278.5 

Thr 307 59 5.03 407.0 249 -24.13 -459.7 

Trp 52 20 1.84 443.6 32 -0.22 -32.8 

Tyr 147 36 2.90 380.2 111 3.23 138.4 

Val 267 36 3.33 439.1 231 -30.95 -634.3 
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or Relevance subset, second, by frequency of the backbone or sidechain contribution 

(weighted count) of that residue type in set or Relevance subset; 
d
For Gly (and all other 

residues) the CA atom is considered part of the backbone, thus Gly has no sidechain. 

However, the total score only tells part of the story and obscures the operational 

details on how the waters actually interact with the proteins.  Figure 2.3 displays (A) 

backbone and (B) sidechain interactions by residue type and interaction class, averaged 

over all water molecules in the data set.  In particular, favorable polar (hydrogen bonds 

and acid/base) interactions are plotted as positive contributions, while unfavorable polar 

(acid/acid and base/base) and unfavorable hydrophobic (i.e., interacting with polar) 

interactions are plotted as negative contributions.  Figure 2.3A (backbone) and 2.3B 

(sidechain) illustrates the average scores for each residue type, i.e., weighted by the 

number of water interactions of those types in the data set.  These charts emphasize the 

similar role of backbone interactions for nearly all residue types, excluding Gly.  This 

contribution is largely independent of the Relevance of the water involved, increasing 

only modestly from 49 (-0.10 kcal mol
-1

) to 57 (-0.11 kcal mol
-1

) and 67 (-0.13 kcal mol
-

1
) for waters Relevant to zero, one and both proteins, respectively.  At the same time, the 

average sidechain interaction scores respond dramatically, increasing from -333 (+0.65 

kcal mol
-1

) to -48 (-0.09 kcal mol
-1

) and 169 (-0.33 kcal mol
-1

). 



www.manaraa.com

51 
 

Figure 2.3.  Average HINT interaction scores for waters at protein-protein interfaces:  

(A) scores normalized by weighted count of residue types (Table 2.3) with protein 

backbone atoms; and (B) scores normalized by weighted count of residue types with 

protein sidechain atoms. 
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2.3.4 Residue-Pair Preferences for Interface H2O:   

By definition, waters found at the interface should interact with residues on both 

proteins.  The floor value for interactions of |10| HINT score units, or about |0.02| kcal 

mol
-1

, excludes a small number of waters (< 1.5%) from having any recorded interaction 

with one (or in rare cases both) of the proteins.  As shown above, in Table 2.3, there is a 

residue identity preference for water-mediated interactions at protein-protein interfaces 

and this differs depending on the role the water plays at the interface.  More specifically, 

it is shown here that there are distinct residue identity preferences for mediated residue 

pairs.  Consider first the total gross sum of HINT scores for each pair of amino acid 

residue types as graphically illustrated with color heat maps in Figure 2.4A for all waters, 

and those Relevant to neither, one and both proteins.  This depiction combines both the 

strength of interaction and frequency of interaction for the residue pairs.  Overall, in 

Figure 2.4A, the most energetically favorable pairs for interface water involve one of the 

polar residues, especially the hydrogen bond acceptors Asp and Glu.  These can partner 

with each other – intriguingly Asp-H2O-Glu scores higher than Asp-H2O-Asp or Glu-

H2O-Glu – or partner extensively with the hydrogen bond donor or amphiprotic residues 

(Arg, Asn, Gln, Lys, Ser, Thr, Tyr), but not significantly with His or Trp.  The most 

unfavorable pairings involve the most hydrophobic and aliphatic residues Ala, Ile, Leu, 

Pro and Val.  The intermediate effect of Phe may be due to its aromatic ring being a 

potential hydrogen bond acceptor.  The scores for waters with Relevance to neither 
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protein (Figure 2.4A) are dominated by strongly unfavorable interactions with 

hydrophobic residues, especially Leu and Ile, while the scores for waters with Relevance 

to both proteins (Figure 2.4A) are most favorable for interactions involving Asp and Glu, 

particularly when partnered with Arg. However, it must be noted that the total HINT 

score shown here reflects both the frequency of these residue pairings as well as their 

relative strengths. 

Frequencies weighted as described in Materials and Methods are set out in Figure 

2.4B.  Overall, water-mediated interactions involving Asp, Glu, Lys, Arg and 

surprisingly Leu are clearly dominant while those involving Cys, His, Phe and Trp are 

most infrequent.  Waters not relevant to either protein (Figure 2.4B) generally interact 

with hydrophobic residues.  For waters relevant to both proteins (Figure 2.4B), the most 

frequent pairs are Asp and Glu with Arg and Lys.  Also, Asp and Glu are found fairly 

frequently in water-bridged interactions with Asn, Gln, Ser and Tyr.  Note that the color 

pattern here is strikingly similar to that of the overall score for the doubly relevant case 

(Figure 2.4A), which indicates that frequency of pair interactions is a key factor.  Finally 

(Figure 2.4C), the score normalized by weighted frequency reveals the relative average 

energetic importance of each interaction pair ranging between -602 score units (+1.17 

kcal mol
-1

) and 541 score units (-1.05 kcal mol
-1

).  
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Figure 2.4. Color heat maps depicting Res1-H2O-Res2 interactions for water molecules 

found at protein-protein interfaces:  All maps are linearly scaled over the maximum 

range of values for that data set.  (A) Total HINT score between waters and Res1/Res2: all 

waters in data set (minimum score -71,358, maximum score 114,632); waters in set with 

Relevance to neither protein (minimum -41,868, maximum 3,685); waters in set with 

Relevance to one protein (minimum -26,470, maximum 50,220); waters in set with 

Relevance to both proteins (minimum -3,534, maximum 60,727).  (B) Weighted count of 

Res1/Res2 with water interactions: all waters in data set (minimum count 0.1, maximum 

count 242.7); waters in set with Relevance to neither protein (minimum 0.0, maximum 

74.0); waters in set with Relevance to one protein (minimum 0.1, maximum 113.3); 

waters in set with Relevance to both proteins (minimum 0.0, maximum 114.5).  (C) 
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Average HINT score (normalized by weighted count) between waters and Res1/Res2: all 

waters in data set (minimum average score -601.6, maximum average score 540.5); 

waters in set with Relevance to neither protein (minimum -624.3, maximum 483.0); 

waters in set with Relevance to one protein (minimum -633.7, maximum 499.7); waters 

in set with Relevance to both proteins (minimum -875.1, maximum 680.9).   Cells 

colored black represent cases where the weighted count was zero, and the HINT score 

normalization yields an undefined value. 

2.3.5 Residue-Pair Roles in Water Interactions:   

Cluster analysis of the matrices behind the heat maps of Figure 2.4 provide 

additional insight into the roles that residues play in interacting with waters.  Figure 2.5 

sets out dendograms of average HINT score for all waters (A), waters Relevant to either 

protein (B), waters Relevant to one protein (C) and waters Relevant to both proteins (D).  

The Relevant to zero case is most different from the others.  Generally, the most 

hydrophobic aliphatic residues (Ala, Ile, Leu, Met, Pro, Thr and Val) are clustered 

together with Thr (except for the case of Relevant to both, Figure 2.5D).  At the opposite 

extreme, Asp and Glu are clustered, save the Relevant to zero case, far from all other 

clusters.  The ability of water to be equally proficient as both a hydrogen bond donor and 

an acceptor somewhat blurs the distinction between residues that are formally acids or 

bases when they interact with it.  The remaining residue types divide into two clusters 
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with somewhat variable membership.   Because the aromatic ring of Phe can act as a 

hydrogen bond acceptor, it clusters with an eclectic group of residues: Ser, Gly, Gln, Lys, 

Trp and/or Thr, but surprisingly not Tyr.  For waters Relevant to neither protein, there are 

typically few favorable interactions, regardless of the character of the residues interacting 

with the water.  The patterns in the associated dendogram (Figure 2.5B), other than the 

large distance separating the hydrophobic residues from the polar residues, are difficult to 

discern; here, Asp and Glu are not clustered together.   A likely determinant defining 

these clusters may involve residue size.   

Figure 2.5.  Dendograms indicating clustering of residues with respect to average 

HINT score (normalized by weighted count) in Res1-H2O-Res2 interactions: (A) for all 

waters; (B) for waters with Relevance to neither protein; (C) for waters with Relevance to 

one protein; and (D) for waters with Relevance to both proteins. 
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This analysis of 4741 water molecules at 179 protein-protein interfaces has 

revealed new information about the various roles that water can play at interfaces.  This 

analysis was anchored by the HINT free energy forcefield and the Relevance metric.  The 

former characterizes the types and qualities of interactions between the interface waters 

and proteins, while the latter is a simple parameter that was previously shown to identify 

water molecules conserved/non-conserved in ligand binding sites [25].  Relevance was 

shown in the present report to be a useful classifier for identifying the roles and partner 

proteins and residues for interfacial waters. 

 Previous studies of water in the interface between interacting proteins have 

generally relied solely on interatomic distances in non-protonated crystallographic 

models to mark interactions between waters and proteins.  This approach, however, often 

poorly represents the complex and subtle energetics and geometric preferences of 

hydrogen bonding.  Thus, this study was performed with all atoms after exhaustive 

optimization of all water orientations [23] to surmount local minima in our models.  The 

hydropathic minimization procedure rewards favorable polar interactions, i.e., hydrogen 

bonds and acid/base, and penalizes unfavorable polar, i.e., acid/acid and base/base, and 

hydrophobic-polar interactions. 
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2.3.6 Waters Relevant to Multiple Proteins: How important is the energetic 

contribution of water to protein-protein associations?   

This is an important question since most protein-protein docking utilities ignore 

the actual (and potential) presence of water at putative interfaces.  Unfortunately, it is 

difficult to determine de novo which water molecules are or will be energetically 

important.  Only 59 (33%) of the protein-protein complexes have an overall favorable 

water contribution considering all interface waters, but 145 (81%) have a favorable 

contribution from waters Relevant to one/both proteins and nearly all, 173 (97%), have a 

favorable contribution from waters that are Relevant to both (the other 6 protein pairs 

have no waters of this class).   The average scores are: -2072 (+4.02 kcal mol
-1

), -84 

(+0.16 kcal mol
-1

) and 1297 (-2.52 kcal mol
-1

) for the water sets at these interfaces 

Relevant to 0, 1 and 2 proteins, respectively.  While each water at each protein-protein 

interface should be evaluated for its own specific environment and role, the overall 

analysis shows that the total water contribution can be quite important: ranging up to 

5845 (-11.35 kcal mol
-1

) per protein pair for the water sets Relevant to both proteins and 

presumably “bridging”.  Also, the Relevance-based classification scheme we have 

proposed certainly has merit for facilely selecting waters that should be considered in 

modeling protein-protein complexes. 
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 The energetic role of bridging water molecules at interfaces is clear and well 

understood, although difficult to experimentally quantify [35-38].  Reichmann et al. [36] 

performed double mutant cycle analysis on eight residue pairs (all with SASA < 10 Å
2
) 

that appeared to be bridged by waters at the TEM1/BLIP (1jtg) interface; only six of the 

eight pairs are truly bridged by water (residue-residue distance > 3.8 Å), yielding an 

average ∆∆GKA [36] for these water-mediated hydrogen bonds of -0.003 kcal mol
-1

, i.e., 

essentially having an energetically neutral effect on interface stability much as shown 

above (+0.03 kcal mol
-1

) for an average interface water in our analysis.  Only four waters 

support these six pairs because two of the waters interact with more than one residue on 

one of the partner proteins (one highly Relevant to both proteins and the other Relevant 

to only BLIP), and it is thus impossible to isolate the specific energetic contribution from 

experimental double mutant data for these two waters.  Of the remaining two waters, 

HINT analysis showed that one (HOH72) is Relevant to only TEM1 and the other 

(HOH111) is not Relevant to either protein, supporting the view that the former is 

strongly associated with TEM1‟s Glu104 and weakly associated with BLIP‟s Ser146, 

while the latter is only weakly associated with Gln99 and repulsive with respect to 

Ser128.  Even here, interpretation is not straightforward: mutating these residues to Ala 

may or may not excise the putative bridging waters, just change their environment.  In 

fact, there may even be space for more that one water in some of the double mutant 

complexes.   
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Another, more subtle, role is that bridging waters also serve as nano-scale pH 

buffers (see Figure 2.6).  By simply re-orienting, individual water molecules can swap 

between acting as donors and acceptors as necessary to maintain a mediated (wet) 

interaction and the integrity of the entire interface.  In contrast, direct hydrogen-bonded 

(dry) interactions between proteins may be weakened by changes in pH.  Of course, 

hydrophobic interactions between protein surfaces are largely unaffected by changes in 

pH.  Evidence for this role of waters was given in the cluster dendogram of Figure 2.5D.  

Other than the distinct clustering of Asp with Glu and the aliphatic hydrophobic residues 

with Met, the remaining twelve residues cluster together regardless of their hydrogen 

bond donor or acceptor character.  
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Figure 2.6.  Water as a nano-scale buffer: (A) increasing the pH of the system is 

compensated by a reorientation of the bridging water molecule; (B) direct unmediated 

interactions are less able to compensate for changes in pH. 
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2.3.7 Waters not Relevant to either protein: Why are there so many waters that are 

seemingly non-Relevant?   

There are a large number of water molecules that do not appear to have a role in 

structure.  A brief survey of moderate-resolution complex structures revealed essentially 

the same fraction of waters that lacked favorable interactions with their protein pairs as 

did the much more extensive high-resolution set.  These results suggest that this type of 

water is a conserved phenomenon as only the most ordered water molecules will have 

interpretable experimental electron density for resolutions poorer than 2.5 Å.  

 The analysis described above did not attempt to detect water molecules that are 

involved in water network chains, i.e., waters that are strongly and favorably interacting 

with two or more other waters that are themselves Relevant to a protein.  To investigate 

this possibility (for an example, see Figure 2.7), we added the water molecules that were 

Relevant to one or both proteins to their partners of highest Relevance and examined the 

remaining (i.e., initially Relevance zero) waters with respect to these “hydrated” protein 

entities.  Only 326 (27%) of the remaining waters were found to have Relevance (≥ 0.25) 

with one and 30 (2.5%) were found to have Relevance to both hydrated proteins.  The 

latter represent water molecules networked in three-water chains.  It is a surprisingly low 

number, but the Relevance-based definition of networking is fairly stringent, and these 

waters are already constrained to be within the confines of the interface region while not 
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already interacting favorably with other protein residues.  It is therefore unlikely that 

significant numbers of these water molecules would turn up to be involved in higher 

order chains. 

 

Figure 2.7.  Water in chain of three water molecules: HOH2331 (red) from protein 

complex 1kxq is Relevant with respect to waters HOH828 and HOH2288 (blue), which 

are each, in turn, Relevant to the proteins in the complex. 

As discussed above, Relevance zero waters have overall unfavorable interactions 

with their partner proteins, which largely arises from interactions with the protein‟s 
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sidechains.  It can be seen in Figure 2.8 that the dominant unfavorable interaction type for 

these waters is hydrophobic-polar; the favorable polar interactions shown in Figure 2.8 

are due to interactions with the backbone (see Table 2.4).  Most of the Relevance zero 

water molecules within the interface are trapped in hydrophobic environments as 

“hydrophobic bubbles”.    

 

Figure 2.8.  Interaction type scores for waters with Relevance to zero, one and two 

proteins. 

 It would appear that these hydrophobic bubbles represent a conserved motif.  One 

intriguing possibility is that a certain amount of instability is required in protein-protein 

interfaces to ensure that the associations are dynamic.  Meenan et al. described the role of 
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some waters found at the 1.77 Å structure of the colicin E9 endonuclease-immunity 

protein 2 interface as “aggravating” the binding between the two proteins [39].  

Sundaralingham and Sekharudu [40] proposed that water may be considered a “lubricant” 

in dynamic protein folding and interaction.  Teyra and Pisabarro [33] classified the 

complexes in their analysis as “obligate” meaning that the association is permanent as 

these interfaces were formed concurrent with chain folding and “transient” where the 

component proteins fold independently of their association [34,41].  The latter of course 

includes proteins involved in regulation of biochemical pathways and signal transduction.  

Similar concentrations (10 vs. 11 water-bridged residues/1000 Å
2
 surface contact area) of 

waters were found in the two groups [33].  The primary data set used here is composed 

entirely of transient proteins.  However, for comparison, a set of 12 homo-dimers, 

predominantly obligate [42] was examined, containing 546 water molecules selected as 

described above.  In the obligate set, there were 113 waters (21%) Relevant to neither 

protein, 302 waters (55%) Relevant to one protein, and 131 (24%) Relevant to both.   As 

would be expected, there are somewhat higher fractions of waters with Relevance to both 

one and two proteins, and a smaller fraction that are non-Relevant.   It appears that 

protein-protein interfaces, independent of the longevity of their association, commonly 

include water molecules that do not have favorable interactions with either protein, 

although the possibility that some or maybe even many of these waters are incorrectly 
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assigned electron density or other crystallographic artifacts cannot be completely 

discounted [10].  

2.3.8 Predictions of water roles:   

The principle of correlated mutations is that interface contacts co-evolve to 

maintain or enhance biologically important associations [43-46].  Using this principle, 

Samsonov et al. recently reported [47] that including solvent matrices in contact 

predictions [48,49] of protein-protein interfaces improve these predictions by 20-30%.  

However, no residue level information was reported.  It is noted above (Figure 2.4B) that 

the observed frequency of Asp-H2O-Glu interactions, in waters Relevant to one or both 

proteins, is notably higher than Asp-H2O-Asp or Glu-H2O-Glu interactions.  This 

suggests that water molecules may act as spacers to effectively lengthen Asp sidechains 

to mimic Glu sidechains.  We observed a similar role for Asp+H2O in protein/DNA 

interactions [19,20].  Whether this is a consequence of correlated mutations is difficult to 

say, but it is an intriguing possibility. 

Water Relevance may be used as a metric to predict the locations of water 

molecules computationally.  Kellogg‟s group previously described [50] an algorithm for 

generating water solvent arrays around proteins or in binding pockets that is superficially 

similar to the GRID algorithm proposed by Goodford [51].  This protocol can easily be 

adapted to use Relevance-based criteria for water placement; for this purpose it is 
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especially significant that Relevance is calculated independent of (experimentally-

determined) crystallographic data like B-factors.  However, this present study indicates 

that the presence of as many as one-in-four energetically unfavorable water molecules is 

an apparently conserved motif.  Their positions and orientations will almost certainly be 

difficult to predict!  Nevertheless, common structural features such as hydrophobic 

bubbles may aid in this understanding and in developing algorithms for computationally 

orienting and locating these waters.  In previous studies, Kellogg‟s group proposed that 

these “unfavorable” water molecules may actually have an important biological purpose 

[21].  It is fair to say that we will not be able to completely model or exploit protein-

protein interfaces until we can properly deal with all of the water molecules that are 

present.  

2.4 Conclusion: 

In this chapter it was shown that only about 21% of all waters at protein-protein 

interfaces are truly bridging while 26% are seemingly only trapped at the interface.  

While it was probably not surprising that Asp and Glu residues appeared most frequently 

in interactions with bridging waters, it was somewhat surprising that bridging is 

dominated by Asp-H2O-Arg and Glu-H2O-Arg interactions but Asp-H2O-Asp or Glu-

H2O-Glu interactions are relatively infrequent, even compared to Asp-H2O-Glu.  Also of 

note is that certain unfavorable interaction motifs are conserved.  The results from this 
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work have implications for the design of compounds that can break protein-protein 

interactions. 
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CHAPTER 3 

PYRIDOXAL KINASE – SERINE HYDROXYMETHYLTRANSFERASE COMPLEX 

MODEL 

 

 

 

3.1 Introduction: 

3.1.1 Different forms of vitamin B6:  

Vitamin B6 has six different forms: pyridoxine (PN), pyridoxamine (PM), 

pyridoxal (PL) and their 5‟-phosphorylated forms (PNP, PMP and PLP, respectively) 

(Table 3.1). PLP is the biologically active and arguably, the most important form of 

vitamin B6 in nature, as it is used as enzyme cofactor by several B6 enzymes (PLP-

dependent enzymes) that include oxidoreductases, transferases, isomerases, lyases and 

hydrolases, with functions of many others unknown. PLP mainly functions as an electron 

sink during catalysis. It is estimated that there are more than 140 different enzymes 

utilizing PLP as a cofactor, a number that amounts to approximately 4% of all known 

catalytic activities [1].
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Table 3.1. Different forms of vitamin B6 

Name Structure Notes 

Pyridoxine (PN) 

 

This is the form that is 

given as a vitamin B6 

supplement 

Pyridoxine 5‟-phosphate 

(PNP) 

 

 

Pyridoxal (PL) 

 

 

Pyridoxal 5‟-phosphate 

(PLP) 

 

Metabolically active form 

Pyridoxamine (PM) 

 

 

Pyridoxamine Phosphate 

(PMP) 

 

 

4-Pyridoxic acid (PA) 

 

Metabolite excreted in the 

urine 
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3.1.2 Toxic effects of high concentrations of Pyridoxal 5’-phosphate (PLP):  

Very high levels of vitamin B6 in its active co-factor form PLP may have toxic 

effects [2-9]. This is due to the fact that PLP contains a very reactive aldehyde group at 

the 4‟ position, which easily forms aldimines with primary and secondary amines, and for 

this reason is often used as a protein labelling agent. Toxicities resulting from 

overconsumption of vitamin B6 are well documented in the literature. Schaumburg et al. 

reported six different cases of vitamin B6 overdose. Each of these cases experienced 

neurotoxicity with slightly different manifestations. Progressive sensory ataxia and 

profound distal limb impairment of position and vibration sense were commonly found 

between these cases. All the symptoms were reversed upon discontinuation of vitamin B6 

[10].
 
The exact mechanism of neurotoxicity is unclear, however in a study done on rats 

by Perry et al., found that this neuropathy is characterized by necrosis of dorsal root 

ganglion sensory neurons and degeneration of the peripheral and central sensory 

projections [5]. High doses of PLP were also found to cause tonic-clonic convulsions in 

mice by Ishioka et al.[11]. Vermeersch et al., also found that PLP inhibits DNA 

topoisomerase IB interfering with the process of winding and unwinding of DNA, that in 

turn impacts protein synthesis [12]. Bartzatt and Bechmann discovered that phenol 

sulfotransferase‟s ability to process phenols and other toxic substances is inhibited by 

PLP [8].  
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Due to the toxicity of PLP, the cell manages to keep the free PLP concentration 

very low. This fact leads to an important question which is how, despite the very low PLP 

concentration, do all the 140 PLP-dependent enzymes get sufficient amounts of PLP for 

their normal functioning? This chapter focuses down on developing a model for the 

protein-protein interaction and channel formation between PLK and SHMT, which may 

serve as a possible explanation for the safe PLP transportation between these two proteins 

avoiding its harmful effects to the cell. In addition, the identification and analysis of the 

interfacial water molecules and their relevance to this protein-protein complex is carried 

out. This model might be useful for guiding site directed mutagenesis. Furthermore, this 

model might also be useful in developing inhibitors for that protein-protein interaction 

providing a new drug target for cancer chemotherapy. 

3.2 Materials and Methods: 

3.2.1 Preparation of crystal structures:  

For the PLK-SHMT protein-protein complex model, the crystal structures of 

pyridoxal kinase (PLK) and serine hydroxymethyltransferase (SHMT) were retrieved 

from the PDB database (PDB code 2DDM and 1DFO respectively)
 
[13,14]. All ligands 

and non-protein atoms were removed including water. Then, using Sybyl 8.1, hydrogen 

atoms were added and minimized (Tripos forcefield, Gasteiger-Hückel charges, distance-

dependent dielectric) to a gradient of 0.01 kcal mol
-1

 Å
-1 

[15]. To determine which 
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residues to be used as constraints for the protein-protein docking process, three 

computational methods were used for their determination.  

3.2.2 Predicting the active residues for the protein-protein complex:  

First, the tunnels whereby the PLP moves through from PLK to SHMT was 

calculated using the CAVER algorithm. CAVER was developed using Dijkstra‟s 

algorithm as a plug-in for PyMol [16].  Then, the Adaptive Poisson-Boltzmann Solver 

(APBS) software package was used to calculate a solvent surface map, colored by the 

electrostatic potential that was viewed in PyMol for each structure [17]. This proved to be 

useful in determining the compatibility of interacting surfaces of both proteins.  

3.2.3 SASA calculation:  

The last step in determining interface residues was through calculating the solvent 

accessible surface area (SASA) of the residues forming the tunnel, calculated by 

CAVER. Each sidechain solvent accessible surface area was calculated using GETAREA 

program developed by Robert Fraczkiewicz and Werner Braun [18].  The radius of water 

probe used was 1.4 Å. Residues with high sidechain SASA, were used to provide 

constraints for the protein-protein docking process.  
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3.2.4 Protein-protein docking:  

Protein-protein docking was performed using HADDOCK (High Ambiguity 

Driven DOCKing) algorithm, which consists of two main stages: In the first stage, 

HADDOCK randomly orients the two proteins and performs a rigid body energy 

minimization with rotation and translation of each molecule. In the last stage, the top 

solutions resulting from the preceding energy minimization are then refined with three 

steps of simulated annealing refinements. In the first step the orientation of the proteins 

are optimized; the second step enhances the configuration of side chains at the interface; 

and the third permits some conformational rearrangements, where both backbone and 

side chains are allowed to move. The default parameters supplied by HADDOCK were 

used. Residues deduced from the previous steps were used to guide the docking 

procedure. The resulting structures were analyzed and ranked according to their average 

interaction energies (sum of Eelec, Evdw, EACS) and their average buried surface area. Then 

these structures were clustered according to their pairwise backbone RMSD at the 

interface [19].
 
Docking results were individually inspected after which good models were 

submitted for refinement using FireDock.  
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3.2.5 Candidate model refinment:  

For the refinment of the docked structures the Fast Interaction Refinement in 

Molecular Docking (FireDock) algorithm was used. The FireDock refinement process 

consisted of three main steps: (1) rearrangement of the interface side chains; (2) 

adjustment of the relative orientation of the molecules; and (3) scoring and ranking, 

which attempts to identify the near-native refined solutions. The ranking produces a score 

that includes a variety of energy terms including desolvation energy (atomic contact 

energy, ACE), Van der Waals interactions, partial electrostatics, hydrogen and disulfide 

bonds, π-stacking and aliphatic interactions, rotamer probabilities, etc. This binding score 

for the candidates ranking is an approximation of the binding-free energy function 

[20,21]. After that, candidate models were minimzed (Tripos forcefield, Gasteiger-

Hückel charges, distance-dependent dielectric) to a gradient of 0.01 kcal mol
-1

 Å
-1

. HINT 

was the main tool used to evaluate and choose the best models. Explicit water molecules 

were added in Sybyl 8.1, followed by minimization (Tripos forcefield, Gasteiger-Hückel 

charges, distance-dependent dielectric) to a gradient of 0.01 kcal mol
-1

 Å
-1

 and, finally 

evaluation by the HINT solvent accounting score [15, 22-27]. 
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3.2.6 Hotspot prediction:  

Finally, for the prediction of hotspots two different algorithms were used. Hot 

spots are defined as the residues for which the change in free energy of the complex is 

increased by 2 kcal mol
-1

 when it is mutated to alanine. The first algorithm, HSPred, 

developed by Lise et al., predicts hot spots based on Support Vector Machines (SVM) 

and on calculated energy potentials. It relies on the structure of the complex as input [28]. 

The second algorithm, Hotpoint, predicts hot spots based on conservation, solvent 

accessible surface area (SASA) and statistical pairwise residue potentials of the interface 

residues [29] followed by a BLAST search was done to see if predicted hotspot residues 

are conserved across species. 

3.3 Results and Discussion: 

3.3.1 Predicted PLK and SHMT tunnels:  

The CAVER algorithm [16] provides rapid, accurate and fully automated 

calculation of channels (tunnels) in static structures. When given a starting point typically 

located inside the molecule, the algorithm searches for the easiest path from that point to 

the surface of the molecule. The algorithm automatically explores a grid constructed over 

the molecule. Nodes are evaluated using a cost function that determines the amount of 

free space around the node. The grid search algorithm is used to find the lowest-cost 

centerline path between a given starting point and the exterior of the molecule. The 
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identified path resembles a tunnel that connects protein residues in pockets or cavities 

with the surrounding bulk solvent. The tunnel characteristics, e.g. length, mean radius 

and gorge radius are determined and can be further analyzed (Figure 3.1). The tunnel 

gorge radius rgorge is one of the most important tunnel characteristics because the tunnel 

gorge can form a bottleneck for substrate access or product release to and from the active 

site of a protein [16].  
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  A      B 

Figure 3.1. Sketch of the computational algorithm implemented in CAVER: (A) 

The black bold circle represents the starting point. The protein is visualized by gray 

circles with Van der Walls atom radii mapped on a discrete grid (black dots). The solid 

line represents the boundary between the protein interior and its surroundings. Empty 

circles represent the maximally inscribed balls on the probable route (dashed line). (B) 

Evaluation of grid nodes by a cost function. The line represents the optimal centerline 

(path) [16]. 

The CAVER algorithm identifies by default the three largest tunnels for each 

protein. Only one tunnel was selected to be analyzed. The selection of tunnels was mainly 

based on the width of the tunnel radius, the larger the better; however, the length and the 

straightness of each tunnel were also taken into consideration. Ser 23 and Lys 229 were 
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used as starting points for PLK and SHMT respectively. Ser23 is one of the residues that 

bind to PL in PLK, while Lys229 covalently binds to PLP in SHMT. Because both 

structures are in closed conformers, the average radii of the tunnels were in the range of 

2-4 Å, which too narrow for the substrate to pass through. Nevertheless, since proteins 

are dynamic, the tunnels have to open for the substrate to be transported either via 

protein-protein interaction or from the bulk solvent. Although, several functional studies 

show these proteins can assume an open conformation, unfortunately, the open 

conformers have not been crystallized. These tunnels are shown in Figure 3.2. The 

residues forming the wall of the tunnels for each protein are shown in Table 3.2 along 

with their sidechains‟ SASA. 

 

   A     B 

Figure 3.2. Predicted tunnels connecting PLP active site and the bulk solvent: (A) PLK 

and (B) SHMT. 
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Table 3.2: Residues forming the tunnel walls for PLK and SHMT 

Rank Residue Type Residue Number Chain SASA 

PLK 

His 59 

A 

82.27 

Tyr 96 57.21 

Asp 130 53.63 

Ile 131 92.83 

Asp 132 68.70 

Tyr 136 99.70 

Thr 226 11.66 

Asp 227 115.53 

Leu 228 10.02 

Gly 230 0.00 

Thr 231 17.00 

Gly 232 0.00 

Asp 233 15.69 

SHMT 

His 126 

A 

43.40 

Leu 127 26.57 

Val 133 73.83 

Ser 175 19.01 

Asp 200 8.62 

Ala 202 11.68 

His 203 5.23 

Ser 355 53.79 

Pro 356 73.81 

Tyr 55 

B 

17.00 

Glu 57 15.34 

Lys 62 47.48 

Tyr 65 18.14 

Glu 246 75.12 

Ser 254 56.43 

Asn 347 20.61 
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3.3.2 Predicted active residues for PLK-SHMT complex:  

For the active residue determination for PLK, four residues that are a part of the 

tunnel were found to be on the surface of the protein as indicated by their SASA. These 

residues, His59, Asp132, Tyr136 and Asp227 are shown in Figure 3.3a. Hence, if there is 

any protein-protein interaction that may occur for PLP channeling, those three residues 

are likely to be part of the contact residues. Because the active site of SHMT is formed by 

two monomers, the active residues Lys62, Glu246, Ser254 from chain A, and Ser355 

from chain B shown in Figure 3.3b are part of the tunnel that are exposed on the surface 

of the protein. These active residues from both PLK and SHMT were used to guide the 

docking process. 
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A 

 

B 

Figure 3.3. Predicted active residues for PLK-SHMT complex: (A) PLK and (B) 

SHMT. 
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The APBS calculation showed the compatibility of both proteins‟ surfaces in 

forming the protein-protein interface. Adaptive Poisson-Boltzmann Solver (APBS) is a 

program designed by Baker and co-workers [17] for modeling biomolecular solvation 

through solution of the Poisson-Boltzmann equation (PBE), which is a continuum model 

for describing electrostatic interactions between molecular solutes in aqueous media.  

As shown in Figure 3.4a, PLK‟s interacting surface is mainly negatively charged, 

while SHMT‟s interacting surface is mainly positively charged as in Figure 3.4b. Closer 

examination of the rest of the surface of PLK revealed that the largest negatively charged 

surface is found at the opening of the tunnel to the two active sites of the dimer. 

Similarly, the largest positively charged surface of SHMT is found at the opening of the 

tunnel to the two active sites of the dimer (Figure 3.4). 
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A 
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B 

Figure 3.4. Electrostatic maps of both posterior and anterior sides: (A) PLK and (B) 

SHMT 
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3.3.3 Protein-protein docking results:  

After using the active residues to drive the docking procedure, the top 40 models 

were individually inspected and clustered into 10 groups according to their pairwise 

RMSDs. Their HADDOCK scores ranged from -18.4 to 52 (where the lower the score, 

the better). Of these 40, 8 models showed promising results with HADDOCK scores 

ranging from -18.4 to 15.6. These models were then submitted to the FireDock server for 

refinement. An additional round of minimization was carried out for these 8 models. 

Then to choose the best model, HINT scores were calculated for the 8 models as shown 

in Table 3.3. The model 7_2 appeared to have both the highest HINT score and the 

lowest global energy. 
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Table 3.3. Global Energy and HINT scores of 8 candidate models. 

Rank Model 

No 

Global 

Energy 

Attractive 

VdW 

Repulsive 

VdW 

ACE HB HINT 

score 

1 7_2 -50.16 -32.89 12.98 2.2 -6.79 5.94e+03 

2 7_1 -37.83 -26.88 9.13 -1.82 -1.58 3.32e+03 

3 2_1 -31 -25.73 6.37 15.96 -4.45 4.70e+03 

4 2_2 -15.5 -26.11 6.75 17.41 -4.45 3.41e+03 

5 7_3 -5.26 -33 13.1 6.31 -2.95 4.83e+03 

6 2_4 -2.03 -25.09 5.76 21.61 -3.06 3.84e+03 

7 7_4 10.02 -29.96 13.18 14.67 -2.67 3.93e+03 

8 2_3 21.62 -24.43 10.44 19.58 -2.33 5.55e+03 

 

The CAVER algorithm was applied to model 7_2 to find the channel connecting 

the active sites of both PLK and SHMT and the result is shown in Figure 3.5. 

 

A 
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B 

Figure 3.5. The predicted tunnel connecting PLK and SHMT: (A) The PLK-SHMT 

complex in (B) parts of the complex were removed to reveal the tunnel. 

3.3.4 HINT analysis and water relevance:  

The calculated HINT scores for this complex are found in Table 3.4. It appears 

from HINT analysis that Glu 246, Lys 250, Glu 111, Lys 62, Asn 394, Glu 164, His 165, 

Lys 331, Ser 355 and Lys 251 from SHMT contributes the most to PLK-SHMT binding 

in the model as indicated by their high HINT scores. In a BLAST search, Lys 250, Lys 

62, Ser 355 and Lys 251 appeared to be highly conserved across 500 different species. 

The Hot spot prediction algorithm predicted that SHMT Val 143 is a hot spot for this 

complex, which was also found to be highly conserved in the same BLAST search. For 
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PLK, Arg 12, Lys 225, Asp 273, Asp 61, Lys 10, Asp 227, Asn 170, Gln 204, Arg 172, 

Pro 58 and Glu 71 have the largest contribution to PLK-SHMT complex indicated by 

their HINT scores. Val 137 was identified as a hot spot and was found to be highly 

conserved in a non-redundant blast search in 500 different species. 

Table 3.4. Calculated HINT scores for model 7_2. 

PLK 

Name 

SHMT 

Name T
O

T
A

L
 

S
co

re
 

H
-B

o
n

d
 

S
co

re
 

A
cid

/B
a
se 

S
co

re
 

H
y
d

ro
p

h
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S
co

re
 

A
cid

/A
cid

 

S
co

re
 

B
a
se/B

a
se 

S
co

re
 

H
y
d

r/P
o
la

r 

S
co

re
 

Pro58 Ser355 246 314 5 16 0 -23 -65 

Pro58 Val358 -19 0 0 7 0 0 -27 

His59 Ser355 17 0 20 4 -1 0 -6 

Tyr60 Lys331 13 0 13 0 0 0 0 

Tyr60 Ser355 28 0 35 0 -1 -2 -5 

Tyr60 Phe357 -21 0 0 1 0 -7 -16 

Tyr60 Val358 -43 0 0 1 0 0 -44 

Asp61 Lys62 738 676 140 9 0 -3 -84 

Asp61 Lys331 239 238 21 2 0 0 -22 

Asp61 Phe357 -80 0 1 25 0 -35 -71 

Asp61 Val358 -78 0 0 4 0 -3 -80 

Phe63 Glu332 -54 0 2 0 0 -55 -1 

Phe63 Lys354 29 0 1 31 0 0 -4 

Phe63 Ser355 31 0 23 9 0 0 -1 

Phe63 Val358 59 0 0 87 0 -1 -28 

Tyr64 Thr329 13 0 8 7 -2 0 -1 

Tyr64 Glu332 -75 0 17 6 0 -18 -79 

Tyr96 Pro353 19 0 42 1 0 -12 -12 

Ile131 Asn120 19 0 26 0 0 -5 -3 

Ile131 Ile142 -22 0 0 0 0 -4 -18 
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Ile131 Pro144 29 0 0 74 0 -2 -43 

Asp132 Asn120 104 175 18 0 0 -81 -9 

Asp132 Ala122 -12 0 0 0 0 0 -13 

Asp132 Gly130 -22 0 1 0 0 -21 -2 

Asp132 Pro132 -42 0 0 35 0 -1 -77 

Asp132 Pro356 -15 0 0 1 0 0 -16 

Ser133 Asn120 -118 49 24 9 -4 -139 -56 

Ser133 Ala122 -27 0 3 51 0 -19 -62 

Ser133 His123 -22 0 7 2 0 -2 -29 

Ser133 Pro144 -10 0 0 1 0 -2 -10 

Ser133 Asn351 -15 0 3 0 0 -17 -2 

Gly134 Asn351 -58 0 9 5 0 -29 -42 

Ile135 Asn351 -220 9 9 40 0 -111 -167 

Ile135 Asp352 -79 0 2 0 0 -75 -6 

Tyr136 Asp352 -38 0 1 3 0 -17 -25 

Tyr136 Pro353 -43 0 2 11 0 -38 -18 

Val137 Asn351 -20 0 1 1 0 -19 -3 

Val137 Asp352 -18 0 1 0 0 -16 -3 

Val137 Pro353 -59 0 1 12 0 -8 -64 

Pro139 Val324 60 0 0 61 0 0 -2 

Pro139 Asn351 -13 0 0 3 0 0 -16 

Pro139 Pro353 31 0 0 31 0 0 0 

Glu164 Glu164 -48 0 2 0 0 -49 -1 

Glu164 His165 -44 0 6 0 0 -17 -34 

Lys169 Glu164 -14 0 0 0 0 -12 -2 

Asn170 Glu164 400 516 154 12 0 -120 -162 

Asn170 His165 54 46 60 6 -25 -9 -24 

Arg172 Leu117 -12 0 0 0 0 0 -12 

Arg172 Val143 -111 0 6 4 0 0 -121 

Arg172 Pro144 18 0 28 0 0 0 -10 

Arg172 Gln161 58 0 75 0 -3 -1 -14 

Arg172 Glu164 23 0 29 1 0 -1 -6 

Arg172 His165 325 264 58 16 -9 3 -7 

Gln204 Glu111 405 562 84 3 0 -189 -55 

Lys225 Glu111 998 1171 2 8 0 -4 -178 
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Lys225 Glu247 -68 0 2 0 0 -65 -5 

Lys225 Lys251 208 215 0 3 0 0 -10 

Thr226 Glu247 12 0 25 5 0 -3 -15 

Asp227 Lys250 717 672 133 10 0 -2 -95 

Lys229 Lys250 -40 0 0 0 -38 0 -1 

Gln268 Glu247 -30 0 2 1 0 -25 -8 

Glu271 Glu246 -533 0 23 1 0 -537 -20 

Asp273 Lys250 829 680 185 2 0 0 -38 

Asp9 Lys83 21 0 21 0 0 0 0 

Lys10 Glu246 734 919 2 10 0 -54 -143 

Ser11 Glu246 -14 0 1 0 0 -15 -1 

Arg12 Glu246 1579 1695 78 13 0 -26 -182 

Glu71 Leu328 -213 0 0 9 0 0 -222 

Glu71 Glu332 -130 0 8 3 0 -113 -28 

Glu71 Ile393 -46 0 0 1 0 -18 -29 

Glu71 Asn394 598 851 21 6 0 -156 -124 

Glu82 Lys62 18 0 19 0 0 0 -1 

Arg83 Lys62 -12 0 2 0 -14 0 0 

Total HINT Score 5944 

 

Finally, a water layer was added on the interface of the PLK-SHMT complex, 

minimized and then evaluated using HINT. The total HINT score after addition of water 

was 7588. The water contribution is shown in Table 3.5. 
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Table 3.5. HINT water rank for the water molecules added to model 7_2. 

HOH 

Name 
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HOH341 1 1.242 126.9 0.389 1.108 196.9 0.358 2.35 323.7 0.747 Both 

HOH652 4 1.244 63.1 0.336 0.95 52.5 0.28 2.193 115.6 0.616 Both 

HOH690 7 0 -42.2 -0.039 1.068 31.8 0.285 1.068 -10.3 0.246 SHMT 

HOH726 10 0.898 -106 0.147 0 -197.2 -0.155 0.898 -303.2 -0.008 Neither 

HOH731 13 1.169 32.8 0.3 1.305 390.8 0.564 2.475 423.6 0.864 Both 

HOH770 16 0 -105.3 -0.04 1.15 422.3 0.497 1.15 317 0.457 SHMT 

HOH789 19 2.595 35.9 0.445 1.213 147.2 0.392 3.808 183.1 0.837 Both 

HOH797 22 1.263 34.3 0.31 1.362 124.5 0.409 2.625 158.8 0.719 Both 

HOH899 25 2.254 105.5 0.474 1.107 -356.8 -0.578 3.362 -251.3 -0.104 PLK 

HOH923 28 1.235 228.5 0.422 1.047 -16.4 0.245 2.282 212.1 0.667 Both 

HOH925 31 1.15 534.2 0.534 0 -95.2 -0.04 1.15 439 0.494 PLK 

HOH934 34 2.358 349.4 0.683 1.305 50.4 0.329 3.663 399.8 1.012 Both 

HOH939 37 2.31 2.7 0.368 1.445 310.3 0.555 3.754 313 0.923 Both 

HOH940 40 1.053 101.4 0.332 1.325 217 0.442 2.379 318.3 0.774 Both 

HOH962 43 1.027 285.2 0.388 0.847 -13 0.213 1.874 272.2 0.601 Both 

HOH963 46 2.214 441.8 0.729 0 -132.1 -0.044 2.214 309.7 0.685 Both 

HOH982 49 0.99 245.7 0.355 1.199 78.1 0.343 2.189 323.8 0.698 Both 

HOH1438 52 0.867 -130.1 -0.041 0.874 -27.7 0.207 1.741 -157.8 0.166 Neither 

HOH1444 55 1.122 -128.4 -0.036 1.337 502.3 0.634 2.459 373.9 0.598 Both 

HOH1445 58 0.877 99.8 0.3 0 75.3 -0.038 0.877 175.1 0.262 PLK 

HOH1474 61 0 -349.5 -0.548 0.837 -35.7 0.194 0.837 -385.2 -0.354 Neither 

HOH1491 64 1.125 -366.3 -0.603 2.711 171.5 0.616 3.836 -194.8 0.013 SHMT 

HOH1497 67 2.531 -1.3 0.397 1.104 -151.3 -0.087 3.635 -152.6 0.31 PLK 

HOH1498 70 0 -174.6 -0.106 1.968 103.5 0.435 1.968 -71.1 0.329 SHMT 

HOH1500 73 1.135 -62.7 0.216 3.873 -18 0.56 5.008 -80.7 0.776 Both 

HOH1533 76 0 -149.9 -0.065 0 -136.9 -0.048 0 -286.8 -0.113 Neither 
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HOH1534 79 0.815 -144.1 -0.071 0 -128.8 -0.041 0.815 -272.9 -0.112 Neither 

HOH1539 82 0 -134.9 -0.046 0.838 -26.1 0.202 0.838 -161 0.156 Neither 

HOH1540 85 1.141 5.3 0.274 0.855 -24 0.206 1.996 -18.7 0.48 PLK 

HOH1544 88 2.137 -91 0.215 1.341 -1.5 0.275 3.478 -92.5 0.49 SHMT 

HOH1545 91 1.139 -157.8 -0.101 0.921 -47.2 0.199 2.06 -205 0.098 Neither 

HOH1552 94 0 -119.5 -0.034 0.776 -59.7 0.164 0.776 -179.2 0.13 Neither 

HOH1560 97 2.423 80.6 0.469 0 -68.7 -0.039 2.423 11.8 0.43 PLK 

HOH1563 100 2.521 435.6 0.746 0 -231.2 -0.237 2.521 204.4 0.509 Both 

HOH1565 103 0.965 84.8 0.305 1.286 144.2 0.408 2.251 229 0.713 Both 

HOH1572 106 0.865 255.3 0.334 0.861 -129.8 -0.04 1.726 125.5 0.294 PLK 

HOH1574 109 2.238 -94.9 0.233 1.463 190.7 0.462 3.701 95.9 0.695 Both 

HOH1701 112 0.809 404.1 0.4 0.939 -205.1 -0.208 1.748 199.1 0.192 PLK 

HOH1721 115 1.286 325.5 0.515 0 -153.3 -0.069 1.286 172.3 0.446 PLK 

  

Looking closely at water molecules in Table 3.5 and comparing them to water 

molecules included in the original starting crystal structures, it was found that waters 726, 

731, and 1444 correspond to waters 166, 31, and 141 respectively from SHMT crystal 

structure (PDB ID 1DFO). The model suggests that waters 31 and 141 from SHMT 

crystal structure (PDB ID 1DFO) become relevant to both proteins in the complex and 

surprisingly water 166 is relevant to neither under a part of a hydrophobic bubble (as 

discussed in chapter 2). The reason for this is that this water was trapped originally near 

hydrophobic residues Gly 130, Pro 132, Gly 137 and Ile 142 then in the complex this 

water became more trapped by the addition of Ile 131 from PLK to the hydrophobic 

environment around this water. For PLK, water 982 from Table 3.5 was found to 

correlate to water 368 in the crystal structure, which the model suggests is relevant to 

both. 
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A detailed analysis of Relevance 2 waters (Chapter 2) in this model shows how 

significant this type of water molecules can be to the interactions between the two 

proteins especially in reliving repulsive interactions between similarly charged residues. 

Table 3.6 shows the interaction scores between pairs of residues from the two proteins 

before and after the addition of water to the model. As can be seen these waters improved 

substantially the HINT scores with an average of 366 (-0.7 kcal mol
-1

).  In the model  

water molecule 341 relieved the unfavorable interaction between Glu 271 from PLK and 

Glu 246 from SHMT as indicated by their HINT score which was -533 (1.066 kcal mol
-1

)  

before the addition of water molecule 341 and became -103 (0.206 kcal mol
-1

) after its 

addition which is considered negligible. Also in the model, water molecule 1565 greatly 

improved the interaction between Glu 71 from PLK and Glu 332 SHMT as indicated by 

the 635 (-1.27 kcal mol
-1

)  increase in HINT score.  
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Table 3.6. The effect of water molecules relevant to both PLK and SHMT in model 7_2. 

PLK 

residue 

SHMT 

residue 

HINT score 

before 

water 

added 

(ΔG in kcal 

mol
-1

) 

Water ID 

HINT score 

after water 

added 

(ΔG in kcal 

mol
-1

) 

Hint score 

difference 

(ΔG 

difference in 

kcal mol
-1

) 

GLU271 GLU246 -533 (1.066) HOH341 -103 (0.206) 430 (-0.86) 

ASN170 HIS165 54 (-0.108) HOH652 199 (-0.398) 145 (-0.29) 

LYS225 GLU111 998 (-1.996) HOH731 1562 (-3.124) 564 (-1.128) 

GLN204 GLU111 405 (-0.81) HOH789 607 (-1.214) 202 (-4.04) 

LYS225 LYS251 208 (-0.416) HOH797 563 (-1.126) 355 (-0.71) 

GLU108 LYS62 18 (-0.036) HOH934 210 (-0.42) 192 (-0.384) 

GLU108 LYS62 18 (-0.036) HOH940 333 (-0.666) 333 (-0.666) 

LYS10 GLU246 734 (-1.468) HOH939 1138 (-2.276) 404 (-0.808) 

ASP9 LYS83 21 (-0.042) HOH982 423 (-0.846) 402 (-0.804) 

GLU71 GLU332 -130 (0.26) HOH1565 505 (-1.01) 635 (-1.27) 

3.4 Conclusion: 

Channel formation between PLK and PLP-dependent enzymes explains how PLP 

can be transferred safely without causing any damages in a manner that is sufficient for 

satisfying the demand for this cofactor by approximately 140 different enzymes. Here, a 

model for the protein-protein interaction of PLK and SHMT is proposed and might be 

utilized in further confirming the theory of channeling by site-directed mutagenesis. This 

model might also be utilized in developing of small molecule inhibitors for this protein-

protein interaction useful in anti-cancer research.  
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CHAPTER 4 

CONCLUSIONS 

 

 

 

The first aim of this work was to provide a detailed analysis of water molecules at 

protein-protein interfaces as well as quantifying their contributions with respect to 

different residue types. So, a data set of 4741 water molecules abstracted from 179 high-

resolution (≤ 2.30 Å) X-ray crystal structures of protein-protein complexes was analyzed 

with a suite of modeling tools based on the HINT forcefield and hydrogen-bonding 

geometry.  A metric termed Relevance was used to classify the roles of the water 

molecules. 

Water molecules were found to be involved in: a) (bridging) interactions with 

both proteins (21%), b) favorable interactions with only one protein (53%), and c) no 

interactions with either protein (26%).  This trend is shown to be independent of the 

crystallographic resolution.  Interactions with residue backbones are consistent across all 

classes and account for 21.5% of all interactions.  Interactions with polar residues are 

significantly more common for the first group and interactions with non-polar residues 

dominate the last group.  Waters interacting with both proteins stabilize on average the 
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proteins‟ interaction by -0.46 kcal mol
-1

, but the overall average contribution of a single 

water to the protein-protein interaction energy is negligible (+0.03 kcal mol
-1

). 

This research could be continued in various future directions. Although the work 

in this thesis answers many questions, it leads one to ask several new questions. While 

the role of bridging waters has already been established, the roles of water molecules that 

have favorable interactions with only one protein and water molecules with no 

interactions with either protein are not yet fully understood and require further 

investigation. Also, a more deeper investigation of the energetic role of the water 

molecules at protein-protein interfaces is important. In addition, the information extracted 

from this analysis could be employed in developing an algorithm to incorporate water 

molecules in the process of protein-protein docking. Another future direction is to use 

this information to find ways to exploit water molecules at protein-protein in developing 

small molecule inhibitors to these complexes, which is of a great advantage to medicinal 

chemistry and drug discovery. 

The second aim was to observe the effect of adding interfacial water molecules in 

developing a model for the protein-protein interaction between pyridoxal kinase and 

serine hydroxymethyltransferase. This model was also created to explore the possibility 

of the formation of a channel between the two proteins upon interaction providing a safe 

way to transport the substrate pyridoxal 5‟-phosphate. The crystal structures of the two 
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proteins where docked together and the results were refined and ranked according to their 

HINT scores. The highest ranking model was used to construct a channel using CAVER. 

Waters were then added on the interface of this PLK-SHMT model and evaluated using 

HINT‟s Rank algorithm. 

The model showed that it is possible for a channel connecting the two active sites 

of pyridoxal kinase and serine hydroxylmethyltransferase to be formed upon the 

interaction of the two proteins. The model showed favorable interactions formed between 

pyridoxal kinase and serine hydroxymethyltransferase as reflected by HINT analysis. The 

model had a HINT score of 5944, which was improved to 7588 upon adding and 

optimizing interfacial water molecules. 

Although this model is not proven to be correct, it will be useful in guiding site-

directed mutagenesis, which is the next step. Site-directed mutagenesis combined with 

kinetic studies could be carried out to a) the residues on the interface of the two proteins 

make sure the two proteins bind and b) to the residues surrounding the channel proposed 

in this model to observe whether the PLP transfer is affected. If this model is validated, it 

can be used to design small molecular inhibitors of this protein-protein interaction, which 

will be potentially useful as anti-cancer drugs. 

Overall, this analysis produced considerable information that helps to deepen our 

understanding of the ever-growing field of biomolecular interactions. Although 
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computational analysis might not provide meticulously accurate information, it provides 

a good approximation to the reality of these interactions. It has always been a guide for 

researchers in their quest of uncovering scientific discoveries in the fields of medicinal 

and biological chemistry among various fields. 
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